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ABSTRACT 

The present work presents a framework for multiscale modeling of multimaterial flows using 

surrogate modeling techniques in the particular context of shocks interacting with clusters of 

particles. The work builds a framework for bridging scales in shock-particle interaction by using 

ensembles of resolved mesoscale computations of shocked particle laden flows. The information 

from mesoscale models is “lifted” by constructing metamodels of the closure terms - the thesis 

analyzes several issues pertaining to surrogate-based multiscale modeling frameworks. 

First, to create surrogate models, the effectiveness of several metamodeling techniques, viz. the 

Polynomial Stochastic Collocation method, Adaptive Stochastic Collocation method, a Radial 

Basis Function Neural Network, a Kriging Method and a Dynamic Kriging Method is evaluated. 

The rate of convergence of the error when used to reconstruct hypersurfaces of known functions 

is studied. For sufficiently large number of training points, Stochastic Collocation methods 

generally converge faster than the other metamodeling techniques, while the DKG method 

converges faster when the number of input points is less than 100 in a two-dimensional parameter 

space. Because the input points correspond to computationally expensive micro/meso-scale 

computations, the DKG is favored for bridging scales in a multi-scale solver. 

After this, closure laws for drag are constructed in the form of surrogate models derived from real-

time resolved mesoscale computations of shock-particle interactions. The mesoscale computations 

are performed to calculate the drag force on a cluster of particles for different values of Mach 

Number and particle volume fraction. Two Kriging-based methods, viz. the Dynamic Kriging 

Method (DKG) and the Modified Bayesian Kriging Method (MBKG) are evaluated for their ability 

to construct surrogate models with sparse data; i.e. using the least number of mesoscale 

simulations. It is shown that unlike the DKG method, the MBKG method converges monotonically 

even with noisy input data and is therefore more suitable for surrogate model construction from 

numerical experiments.  

In macroscale models for shock-particle interactions, Subgrid Particle Reynolds’ Stress Equivalent 

(SPARSE) terms arise because of velocity fluctuations due to fluid-particle interaction in the 

subgrid/meso scales. Mesoscale computations are performed to calculate the SPARSE terms and 

the kinetic energy of the fluctuations for different values of Mach Number and particle volume 

fraction. Closure laws for SPARSE terms are constructed using the MBKG method. It is found 
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that the directions normal and parallel to those of shock propagation are the principal directions of 

the SPARSE tensor. It is also found that the kinetic energy of the fluctuations is independent of 

the particle volume fraction and is 12-15% of the incoming shock kinetic energy for higher Mach 

Numbers.  

Finally, the thesis addresses the cost of performing large ensembles of resolved mesoscale 

computations for constructing surrogates. Variable fidelity techniques are used to construct an 

initial surrogate from ensembles of coarse-grid, relative inexpensive computations, while the use 

of resolved high-fidelity simulations is limited to the correction of initial surrogate. Different 

variable-fidelity techniques, viz the Space Mapping Method, RBFs and the MBKG methods are 

evaluated based on their ability to correct the initial surrogate. It is found that the MBKG method 

uses the least number of resolved mesoscale computations to correct the low-fidelity metamodel. 

Instead of using 56 high-fidelity computations for obtaining a surrogate, the MBKG method 

constructs surrogates from only 15 resolved computations, resulting in drastic reduction of 

computational cost.     
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PUBLIC ABSTRACT 

This thesis develops numerical framework for bridging scales in problems with wide variety of 

length and time scales. The calculations involved in such multiscale problems in engineering are 

expensive and require tremendous computational powers even on supercomputers. A robust 

method pf performing these classes of computations is described in this work; while the thesis uses 

a particular example of shocks interacting with debris, the methods presented are generic and may 

be used for a wide variety of multiscale problems in engineering applications.    
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CHAPTER 1.  INTRODUCTION 

1.1 INTRODUCTION 

A wide variety of problems with distinct meso- and macroscales appear in several important 

engineering applications. Examples of typical multiscale problems are the dynamics of particle-

laden gases [1,2], deformation of heterogeneous materials such as bones [3–5], concrete [6,7], 

heterogeneous explosives[8–11], sediment transport in river beds [12], and meso-scale models of 

blood flow[13]. In such problems, macroscale computations typically resolve a limited range of 

length and time scales. The unresolved/subgrid scales are modeled using closure laws in 

homogenized (volume-averaged/filtered/coarse-grained) macroscale systems of equations. 

Traditionally, such closure laws were obtained from physical experiments, canonical theoretical 

constructs or phenomenological arguments. With increasing computational power and improved 

physical models and algorithms, it is now possible to derive closure laws from highly resolved 

mesoscale simulations. This work addresses the issue of efficient and accurate closure model 

construction from highly resolved meso-scale simulations in the context of shocked particle-laden 

flows.  The techniques examined in this work can be applied generally to the construction of 

closure models in any multi-scale modeling problems where there is a distinct separation of scales.    

1.2 CLOSURE LAWS IN MACROSCALE MODELS  

Closure Laws in a General Macroscale Model in Problems with Multiple Length and Time 

Scales 

In problems with multiple length and time scales, the macroscale variables can be represented by 

the vector A and satisfy the system of equations given by [14] 

 

 𝐅𝐅(𝐀𝐀,𝐃𝐃) = 𝟎𝟎 (1) 

 

where F is the macroscopic operator. D is the information at the macroscale, which depends on 

the mesoscale interactions and needs to be provided to close Equation (1). Once D is known, A 

can be determined using Equation (1)  
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The mesoscale state variable a is a solution of the system of equations given by [14]  

 

 0af
b
=)(  (2) 

 

where f is a mesoscale operator and 0 is the null-vector. In the mesoscale system of equations, b 

represents the constraints (e.g.  boundary/initial conditions) on the mesoscale model; it is typically 

prescribed by local macroscale dynamics. In a multiscale modeling framework, the macroscale 

supplies the constraints b to the mesoscale model and the mesoscale returns the missing 

information, D to the macroscale model in form of a closure law. A closure law is a model of the 

form 

 

 𝐃𝐃 = 𝐷𝐷(𝐛𝐛) (3) 

 

where the constraints b define the parameter space for D.  

Closure Laws in Macroscale Models of Shock Particle Interactions  

For the particular problem of shocked gas-particle flows[1,15], the number of particles in the flow 

is so large that macroscale models cannot explicitly track the dynamics of each such particle. 

Macroscale computations are performed using Eulerian-Lagrangian [16] and Eulerian-Eulerian 

[17] approaches. In the Eulerian-Lagrangian (E-L) approach, a popular macroscale model for 

shock particle interaction is the Cloud-in-Cell (CIC) or the Particle Source in Cell (PSIC) method 

[16,18–23]. In this method, the fluid phase is computed in the Eulerian frame while particles are 

tracked in Lagrangian fashion. In the interest of computational tractability, particularly for large 

ensembles of particles, E-L methods typically track “computational” particles: pseudo-particles 

that are agglomerates of a large number of  physical particles ([16,20,24]).The computational 

particles are modeled as singular point sources which couple with the carrier fluid through 

momentum exchange modeled via source terms (D) in the macroscopic fluid equations. These 

exchange terms depend on the local macroscopic conditions, e.g. shock strength and particle 
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loading, which define the parameter space for obtaining the closure law in the form given by 

Equation (3).  

Recently [Reference], the traditional CIC method has been improved model by adding the effects 

of velocity fluctuations in the particle and fluid phases within a computational particle. In this 

improved approach, the instantaneous momentum-equation for a computational particle evolves 

as [Reference] 

 

 𝑑𝑑𝑣𝑣𝑖𝑖
𝑝𝑝

𝑑𝑑𝑑𝑑
= 𝑓𝑓(𝑎𝑎�𝑖𝑖)𝑎𝑎�𝑖𝑖 + 𝑑𝑑𝑓𝑓�𝑎𝑎�𝑗𝑗�

𝑑𝑑𝑎𝑎�𝑗𝑗
𝑎𝑎′𝚤𝚤𝑎𝑎′𝚥𝚥�������  (4) 

 

Here 𝑎𝑎𝚤𝚤� = 𝑢𝑢�𝑖𝑖 − 𝑣̅𝑣𝑖𝑖
𝑝𝑝 is the mean slip velocity of the fluid, 𝑢𝑢�𝑖𝑖  and 𝑣̅𝑣𝑖𝑖

𝑝𝑝 are the mean velocities of the 

fluid and the computational particle and 𝑎𝑎𝑖𝑖′ = 𝑢𝑢𝑖𝑖′ − 𝑣𝑣𝑖𝑖
𝑝𝑝′ where 𝑢𝑢𝑖𝑖′ and 𝑣𝑣𝑖𝑖

𝑝𝑝′ are the fluid-phase and 

particle-phase velocity fluctuations. The first-term in the right-hand side of Equation (4) represents 

the mean momentum-transfer (drag, lift) between the fluid and the particle phases and arises in 

typical CIC models. The stress tensor in the second term, 𝑎𝑎′𝚤𝚤𝑎𝑎′𝚥𝚥�������   is an additional term that is not 

typical of first-order CIC models. This tensor represents the effect of the velocity fluctuations 

resulting from the interaction of the gas and particle phases in the subgrid/meso-scale and arise in 

the macroscale because of Reynolds’ averaging over computational particles (hence the name 

SPARSE, which is an acronym for Subgrid Particle Average Reynolds’ Stress). It has been shown 

that rather than including the drag alone, a macroscale formulation that uses both the SPARSE 

terms in addition to the drag uses lesser number of computational particle than typical CIC models 

to trace a cloud of particles interacting with shocks.  

Constructing Closure Laws from Mesoscale Simulations of Shock Particle Interactions 

To solve the macroscale system of equations, it is necessary to close the drag and the SPARSE 

terms. There are several semi-empirical drag laws available to close the macroscale gas-particle 

momentum equations [25–31]. These drag laws are developed via experiments performed in a 

limited parameter space and extrapolated to other regimes.  An alternative, pursued in this and 

other works [3–5,7,20,32–36] is to construct closure laws using resolved mesoscale simulations. 

In this approach, mesoscale computations are performed for a range of anticipated flow conditions 
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a priori. A numerical model for the closure laws are constructed from these mesoscale 

experiments. The simulation-based closure model, also known as a metamodel or a “model of a 

model” [37–39] serves as a surrogate for the meso-scale (subgrid or unresolved) dynamics in the 

macroscale computations. The macroscale computations utilize the numerical closure models at 

each time step in each sub-volume of the macroscale domain.  

1.3 OBJECTIVES OF THE THESIS 

Selecting a Metamodeling Technique for Creating Closure Laws from Numerical 

Experiments 

A key issue in creating surrogate models from mesoscale experiments is choosing an appropriate 

metamodeling technique from a wide selection of existing methods [39–42]. Because mesoscale 

computations are expensive, a suitable surrogate modeling technique must contend with the cost 

of performing large ensembles of numerical experiments. Furthermore, to prevent wastage of 

computational effort, each additional mesoscale computation should improve the accuracy of the 

surrogate model – in other words, a metamodeling technique must be monotonically convergent.  

The first objective of the thesis is to compare the rates of convergence of different metamodeling 

methods for different classes of analytical functions and semi-empirical closure laws. In Chapter 

2, candidate state-of-the-art surrogate modeling techniques are considered. These are the 

Stochastic Collocation (PSC) methods [43,44], the Radial Basis Function Method (RBFANN) 

[45,46] and the Kriging Family of Methods – in particular the Dynamic Kriging Method [37]. 

These methods are used to create metamodels from different analytical functions and canonical 

drag laws. The rates of convergence of the metamodeling techniques are quantified for each of 

these functions and compared with each other. Among the methods evaluated, the Dynamic 

Kriging method has the highest rate of convergence for all the functions and is identified as a 

suitable metamodeling method for constructing surrogates from real-time numerical experiments.   

Creating Surrogate Models for Drag on Particles from Numerical Experiments of Shock 

Interacting with Particles 

After identifying a suitable metamodeling technique, the second step is to apply the method to 

create surrogate models from real-time numerical experiments. Noise is inherent to numerical 

experiments; quantifying the convergence of metamodeling technique in the presence of noise 
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from real-time numerical experiments is important to create a smooth as well as convergent 

surrogate modeling framework. Furthermore, mesoscale computations present different length and 

time scales from the macroscale computations. A quantity of interest to closure laws (such as drag) 

is a function of the mesoscale length and time scales. However closure laws that are useful for 

macroscale computations are usually scalar-valued functions, independent of mesoscale length and 

time scales [26,27,47]. How does one appropriately homogenize quantities like drag over 

mesoscale length and time scales?  

In Chapter 3, numerical computations of shocks interacting with particles are used to construct 

surrogates for the drag as a function of the shock Mach number, Ma and volume fraction, ϕ .  A 

procedure for homogenization of the mesoscale drag – both in time and space is demonstrated. 

Furthermore, to alleviate the influence of noise in mesoscale experiments, a Modified Bayesian 

Kriging Method [48] - which is a modification of the Kriging method selected in Chapter 2 - is 

analyzed for the suitability of creating noise free surrogates from numerical experiments. The 

MBKG method is used to create surrogates for drag; the convergence of the method is evaluated 

and the number of mesoscale computations required to create a reasonably accurate surrogate for 

drag is ascertained.    

Creating Surrogate Models for the SPARSE Tensor 

To close the macroscale system of equations, both the drag/lift forces as well as the SPARSE 

tensor 𝑎𝑎′𝚤𝚤𝑎𝑎′𝚥𝚥������� must be quantified in the parameter range corresponding to shock-particle 

interactions. Furthermore, to evaluate the necessity of the SPRASE terms in the macro-scale 

model, it is necessary to quantify the contribution of the kinetic energy of the velocity fluctuations 

to the momentum transfer between the particles and the gas.  

Because velocity fluctuations are naturally incorporated in mesoscale simulations, resolved 

simulations of shock-particle interactions can be used for the above purposes. In Chapter 4, 

following the procedures for drag, surrogate models for the SPARSE tensor 𝑎𝑎′𝚤𝚤𝑎𝑎′𝚥𝚥������� are obtained 

from high-fidelity simulations of shock-particle interactions. The surrogates are then used to 

quantify the kinetic energy of the velocity fluctuations as a function of the shock strength and 

particle volume fraction.  
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Construction of Surrogate Models using Variable Fidelity Techniques  

In the previous chapters, the closure models for drag and SPARSE terms are constructed for a two 

dimensional parameter space. It is well known that the number of experiments increases 

exponentially with the dimension of the parameter space [53]. Mesoscale computations are 

expensive; each 2D mesoscale computation of interaction of shocks with particles is several hours 

of compute time in a multiprocessor system. The process becomes even more computationally 

intensive for more expensive mesoscale computations (e.g. 3D mesoscale computations). 

Therefore, creating closures based on higher dimensional parameter spaces (e.g. drag as a function 

of Mach Number, Particle Volume Fraction, Reynolds Number) using ensembles of expensive 

mesoscale becomes practically impossible [34] because of the high computational cost of 

performing numerical experiments. In such scenarios, it is useful to explore alternative methods 

which reduce the computational cost of constructing surrogates from mesoscale numerical 

experiments.   

One such alternative is the variable-fidelity technique [35–42] used commonly in for constructing 

metamodels in surrogate-based optimization problems. In this approach, ensembles of low-

resolution/coarse grid computations are used to create an initial surrogate model; this is 

subsequently corrected by using only a few high fidelity computations. Chapter 4 evaluates the 

suitability of different variable fidelity techniques for use in multiscale modeling problems. Three 

different correction techniques are evaluated based on the computational cost and the error entailed 

in constructing reasonably accurate surrogates for drag in particles interacting with shock. The 

rates of convergence of these methods as well as the computational time entailed with performing 

the high-fidelity computations for correcting the surrogates are compared with each other. The aim 

of the chapter is to ascertain the suitability of using variable fidelity models for constructing 

surrogates for multiscale modeling problems. 

1.4 CONCLUSION 

The thesis evaluates the suitability of using surrogate models for bridging scales in problems with 

multiple length and time scales. Several state-of-the-art surrogate modeling techniques are 

evaluated by constructing surrogate models for analytical functions and canonical drag laws. 

Among these, the Kriging family of methods are found to have the highest rates of convergence 

and are then used to create surrogates from real-time mesoscale simulations of shock-particle 
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interactions. It is found that noise is an inherent part of numerical experiments; among the different 

Kriging methods, the MBKG method is found to contest will noise in experiments. The MBKG 

method is used to create surrogates for drag as well the SPARSE terms in macroscale models of 

shocked particle-laden flows.  Finally, to reduce the computational cost of constructing surrogates 

from large ensembles of resolved simulations, the possibility of creating surrogates from relatively 

inexpensive mesoscale computations is evaluated.  
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CHAPTER 2.  EVALUATION OF CONVERGENCE BEHAVIOR OF 

METAMODELING TECHNIQUES FOR BRIDGING SCALES IN MULTI_SCALE 

MULTIMATERIAL SIMULATION 

2.1 INTRODUCTION 

In multiscale modeling problems, the physics of the micro/meso-scale needs to be 

represented in macro-scale simulations. This can be achieved by averaging over the heterogeneous 

micro/meso-scale. In such volume-averaged macro models [19] or homogenized models [30] 

micro/meso physics appear in the form of closure terms in the macro-scale equations. In general, 

closure models are obtained in the form of correlations developed in a physical experiment [21,31–

33]. Empirical closure models such as drag correlations are only applicable in limited parameter 

spaces. To overcome this limitation, high resolution micro-scale methods that resolve the 

dynamics at the particle scale can be used as surrogates for physical experiments to obtain closure 

models connecting the meso-scale physics to the macro-scale. 

2.2 METAMODELING FOR BRINDGING SCALES 

A metamodel, or a ‘model of a model’ [34] builds a hypersurface from a limited amount of 

input/output data and approximates the output over a much wider parameter space. An excellent 

overview of metamodeling techniques is given in [35]. Several studies have compared metamodels 

for reconstructing hypersurfaces from computational experiments. A review of the challenges and 

concerns in metamodeling techniques can be found in [35] and [36]. In addition, Jin et.al. 

compared the hypersurfaces approximated by a Polynomial Response Surface Method (RSM), a 

Kriging method, a Radial Basis Function Neural Network (RBFANN), and Multivariate Adaptive 

Regression splines (MARS) for 14 different test functions. However, these studies have been 

limited to comparing the quality of approximation only for a given number of input points, and not 

over a range of input points. 

The choice of a “good” metamodeling technique depends on the application and the purpose of 

the metamodel. Because metamodels are constructed from expensive numerical computations in 

multi-scale modeling and because the multi-scale method should converge with increasing degrees 

of freedom, convergence of the metamodels with respect to the number of input points for a wide 

variety of hypersurfaces warrants careful investigation. This study shows that some metamodeling 

techniques converge faster than others only for a certain classes of hypersurface. Furthermore, 
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some metamodels converge faster when the number of sampled input points is low, while other 

metamodels converge faster when the number of inputs is high. The focus of the current work is 

to examine the rate of convergence of the following three classes of metamodels for their suitability 

in bridging scales in a multi-scale framework: 

1. An interpolation method; Stochastic Collocation (PSC) methods [37,38] the Polynomial 

Stochastic Collocation method (PSC) and the Adaptive Stochastic Collocation Method (ASC) are 

chosen as representative interpolation methods. 

2. A fitting method; the RBFANN method [39,40] is the fitting method considered in the study. 

3. A method which first fits a global response surface and then interpolates local departures from 

the global fit; the Kriging method [34] and the Dynamic Kriging Method (DKG) [41]are chosen 

in this study. 

2.3 METAMODELING TECHNIQUES 

  The problem of metamodeling is the estimation of the value of a function f(x) at a point x0 where 

f(x0) is unknown and the value of f(x): ℜ→ℜn  is only known at certain discrete (distinct) points, 

xj. Here, nℜ [0,1] is a bounded subspace of Rn, with 0 and 1 being an n-dimensional vector with 

all entries 0 and 1 respectively. The points, xj, j =1, 2, ..., N, are the “input points” to the 

metamodel. 

2.3.1 Stochastic Collocation Methods 

Stochastic Collocation (SC) interpolation methods [37,38] rely on sparse grids generated using the 

Smolyak algorithm [37] to build a multivariate interpolation method by recursively taking the 

tensor products of univariate interpolation formulae. The resultant nodal architecture takes 

advantage of the recursive nature of the algorithm to enhance sparsity, i.e. limit the number of new 

data points required to improve the order of accuracy of the interpolation function. In SC methods, 

the estimated value of the function, ( )0xf~ is given by 

 

 ( ) ( )( )∑ ∑
= =

⊗⊗=
1

1

1

1

1

1
1 1

...,...,...~ i in

n

n

n

n

n

m

j

m

j

i
j

i
j

i
j

i
j aaxxff 0x  (5) 



www.manaraa.com

10  
 

where i is the level of interpolation, mi is the number of inputs required for level i and aj  are the 

basis functions used in n dimensions. The convergence of the SC method depends on the choice 

of basis function as well as the nature of the hypersurface being interpolated. In this study, two SC 

methods are considered, which will be referred to as the Polynomial Stochastic Collocation (PSC) 

method and the Adaptive Stochastic Collocation (ASC) method. The input points for PSC method 

are based on the end knots of a Chebyshev polynomial on a Clenshaw–Curtis grid (Figure 3).   

   The PSC method is particularly effective in interpolating globally smooth functions because of 

the fit based on Lagrange polynomials. However, for steeper gradients and highly localized 

features, the PSC method displays Gibbs phenomena. Adaptive methods are therefore required to 

avoid these spurious oscillations in the solution. The support nodes in a Clenshaw–Curtis grid are 

not suited for adaptivity because they must be predetermined at each level. In the ASC method, 

input/output pairs are therefore located on a Newton–Cotes grid with equidistant nodes. The grid 

is locally refined around points where the hierarchical surplus, defined as, 
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at level i on point j is above a threshold value, ε. Local linear spline functions are used as the 

polynomial bases in the ASC method because high order polynomial basis functions suffer from 

Gibbs’s phenomenon on uniform grids.  

  A major advantage of SC methods is the availability of an a priori error estimate. For the 

PSC method, the interpolation error in the maximum norm is on the order of 

 

 ( ) ( ) ( ))1(3
2

2 log~ −−

∞
=− ni NNOff 00 xx  (7) 

 

where n is the number of dimensions and N is the total number of interpolation points. In the ASC 

method, the additional error depends on the threshold hierarchical surplus value, ε 
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where N2 is the difference between the full Smolyak sparse grid and the number of input points in 

the locally refined grid. 

2.3.2 Radial Basis Function Neural Network 

A Radial Basis Function Artificial Neural Network (RBFANN) is a fitting method, 

particularly suited to function approximation and pattern recognition [39], which comprises a 

(finite) set of identical basis functions, called Radial Basis Functions (RBF) centered around 

several distinct points in the input space. In an RBFANN method, the estimated value of the 

function at a point 0x is given by 
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where λk is the weight associated with each of the basis functions ( )
kk cc θφ ;,xx0 , while the 

parameter 
kcx is the position of the basis function and the parameter 

kcθ is the shape parameter. A 

typical choice of the basis function is a Gaussian ( ) 
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kcckd xx0 −= , is the Euclidean Norm; this basis function has non-compact support. The weights 

λk are given by solving the least-squares problem 

 

 fHλ ⊥=  (10) 

 

where H=Hjk = ( )
kk cci θφ ;xx − j =1, 2, ..., N, k =1, 2, ..., M, with N being the number of 

inputs and M the number of Gaussians used. The determination of optimal parameters, M, xck and 

θck of an RBFANN is a subject of active research [7,40,42–44]. In the current approach the 

parameters are determined using an unsupervised training process (which means that a non-linear 

optimization algorithm is not performed to determine the parameters). The RBF algorithm involves 

the following stages. 
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1. Determination of M: In order to avoid “memorizing” [65] the inputs, in a typical RBFANN, the 

number of RBFs is chosen to be less than the number of inputs. However, in the context of a multi-

scale framework, RBFANN is used to “learn” from fully-resolved micro-scale computational 

experiments. Since such computations are expensive, the method must create a hypersurface from 

as few inputs as possible. The number of Gaussians are therefore chosen to be approximately 1.1 

times the number of inputs. 

2. Determination of xck, k =1, 2, ..., M. The RBFs are initially uniformly distributed in the domain 

and are updated by a K-means clustering algorithm to avoid the possibility of an empty cluster in 

case of non-uniform inputs. 

3. Determination of the shape parameter, θck, of the RBFs: The shape parameter is chosen to be 

equal to the mean distance of an RBF to its five nearest neighboring RBF such that they span the 

entire domain of the input space 

2.3.3 Kriging Family of Methods 

The third class of metamodels studied is derived from Kriging methods, which have their 

origin in mining and geostatistical applications involving spatially and temporally correlated 

data[45]. Kriging methods combine a global (polynomial) model which fits to the given response 

surface, while the local departures from the global fit are estimated using semi-variogram models 

[46]. The resulting approximation interpolates the sampled input points. In a Kriging method, the 

estimated value of the function is given by 

 

 ( ) ( ) ( )000 xxx Zpf
r

l
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where ( )0xf~  is the approximation to )(xf  at 0xx = ,  ( )0xlp denotes the l-th order term in a 

polynomial basis function of maximum order r and lλ  is the solution to the set of normal equations 

( ) ( )jllj pf xx λ= , j=1,2,…,N. In Equation (4), ( )0xZ  is a Gaussian random process with zero 

mean and a covariance structure ( ) ( )[ ]qj ZZE xx  j,q = 1,2,…,N, with the process variance σ2. The 

correlation model Rjq of the process is of the form:  
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with a shape parameter θ where 
kqkjk xxd −= , k = 1,2,…,n, where n is the dimension of the vector 

X.  The value of θ is selected by maximizing the following log-likelihood function of the model 

parameters 
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where ( ) ( ) ( ) T
Nfff xxxf 1 ...2= ,  T

rλλλ ...10=λ  and ( )jljl pP xP == .  In the 

current work, the Kriging method with a first-order mean structure and a Gaussian correlation 

model is applied using a MATLAB code, DACE [34]. 

An improved version of Kriging algorithm called the Dynamic Kriging Method with adaptive 

sampling (DKG) [41,47] has been implemented. The key aspects of the algorithm are summarized 

here. 

1. The DACE code uses a modified Hooke and Jeeves algorithm [34] to find the optimum value 

for θ. However, this method often fails to provide a global optimum of θ and has therefore been 

replaced in the DKG method by a Global Pattern Search (GPS) algorithm [47]. 

2. The choice of the correlation model and the mean structure depends on the hypersurface to be 

approximated and is not known a priori. In the DACE code, the order of the mean-structure, r, and 

the correlation function are selected by the user a priori. However, the DKG method compares 

between three mean structures corresponding to r=0, 1and 2, using a Cross-Validation (CV) error 

estimate. The method also evaluates seven different correlation models, and selects the best one, 

i.e. the model which maximizes the likelihood function. 

3. In a typical Kriging model, samples are either supplied by the user heuristically or are supplied 

by a sampling strategy like the Latin Hypercube Sampling method or Latin Centroidal Voronoi 

Tessellation (LCVT) method. These methods usually generate input points in the domain 
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uniformly. However, the Dynamic Kriging model is integrated with an adaptive sampling strategy, 

which selects more samples at highly non-linear portions of the hypersurface, thus aiming to obtain 

a better approximation using a parsimonious distribution of input points.  

2.4 EVALUATION TECHNIQUES FOR METAMODELS 

  In order to be used for the generation of closure models in a multi-scale modeling framework, it 

is desirable that the metamodels described in the previous sections satisfy certain restrictions on 

the error behavior and model construction. These include: 

1. Parsimonious representation: Computational experiments are expensive to perform and a single 

high-resolution realization can take several hours to compute, even on multiprocessor 

architectures. Thus, the metamodel should be accurate and converge rapidly when supplied with 

information obtained from a minimum number of high resolution simulations (input data points). 

2. Monotonic convergence: The inclusion of additional meso-scale simulations must result in 

improved approximation of the closure model. Because the closure model will not be known a 

priori, monotonic convergence is required so the modeling error can be estimated and additional 

micro-scale computations can be performed to improve the accuracy of the metamodel. 

3. Multidimensional representations: Since multidimensional parameter spaces are expected, the 

method must be easily extendable to multiple input dimensions without suffering from the “curse 

of dimensionality”, i.e. the number of input points should not increase exponentially with the 

increase in the dimension of the input space. This consideration obviates the use of methods like 

Lagrange interpolation and discourages the use of methods which operate on a dense grid of input 

points. 

4. Flexibility and reuse: Since the metamodeling technique relies on expensive high resolution 

simulations as inputs, previous results must be utilized when expanding the parameter space. In 

addition, if the parameter space is expanded to include a larger domain of approximation, the 

augmented parameter space and corresponding data values must be included in generating an 

updated hypersurface. This becomes difficult, for example, when a metamodeling approach relies 

on fixed collocation points (for example, Gauss points in the computational domain, zeroes of a 

Chebyshev polynomial, etc.) for constructing closure models because additional interpolation 

would be needed to fit data onto the predefined nodes. 
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5. Treatment of noisy data: Since numerical noise is expected in the meso-scale results, it is 

preferred to have the meta-model filter noisy data to build a smooth approximation without adding 

excessive filtering errors. 

2.5 ANALYSIS OF CONVERGENCE BEHAVIOR FOR METAMODELING 

TECHNIQUES 

To evaluate and compare the metamodels in light of the above mentioned criteria, 

hypersurfaces for several predetermined functions are generated and the approximations are 

compared to the exact functions. The method of comparing the metamodels is as follows: 

1. Training the metamodels: A number (say N) of input points of a given function are provided to 

the metamodels as training points. These sample inputs are spaced at regular intervals along each 

axis throughout the parameter space for the RBFANN and the Kriging method. Because the input 

points of a PSC method are predetermined for each level of refinement, a comparable number 

(∼N) of nodal collocation points are provided as inputs for the PSC method. In the DKG and ASC 

methods, the sample insertion criteria is adjusted such that when the maximum number of samples 

reach N, no further inputs are generated and the training process is terminated. Thus, the 

approximation of the metamodels are evaluated at a comparable number of training points. 

2. Building the hypersurface to test accuracy: Once trained, the metamodel is used to predict the 

value of the function at S=100 ×100uniformly distributed points in the domain of approximation. 

3. Evaluating the approximation error and the rate of convergence: Because metamodels are 

constructed from analytical functions, it is possible to compare the predicted values of the 

metamodels with the exact values of the function at these S points. In In order to quantify the 

accuracy of approximation at these points, a normalized sum-of-squares error is calculated: 
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where f(xj) is the exact value of the function at the point xj and ( )jxf~  is the value approximated by 

a metamodel.  
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4. Local error estimation: Since the error measure given by Equation (4)  is a global measure of 

approximation errors, a normalized local error field, δ(xj), defined as 
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is calculated to quantify the local approximation error of a hypersurface by a metamodel at the 

points xj,  j =1, 2, ..., S. Representative plots showing the contours of the local error field for a 

given value of N are also shown in the subsequent section. 

2.5.1 Harmonic Test Function 

The first function considered is a smooth harmonic function, given by  

 

 2)4cos()2sin(),( += yxyxf ππ  (16) 

 

where x and y range from 0 to 1. As the convergence rates of the errors shown in Figure 2 

demonstrate, if the number of input points is below 60, the hypersurface is best approximated by 

the RBFANN and DKG methods. However, as the number of input points increases, the rate of 

convergence of the RBFANN method decreases. The value of the shape parameter decreases as 

the number of input points increases for the RBFANN method. The system of equations defined 

by (10) becomes ill-conditioned and the SVD solver essentially “filters” out higher frequencies of 

the interpolation matrix. As the higher frequencies are removed, the accuracy of the representation 

decreases and the rate of convergence decreases if the number of inputs approaches and exceeds 

100 points. 

The error in approximation by the Kriging method, applied using the DACE code, does not 

decrease monotonically, evinced by the spikes seen in Figure 2. The rate of convergence changes 

when the number of input points changes from 64 to 81 and from 81 to 100. To further investigate 

this, the value of the shape parameter θ, as estimated in the Kriging Method is examined and 

compared with that obtained by the DKG method in Table 1 .  
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Number of Inputs θ (Kriging) θ (DKG) 

36 6.13 0.8898 

64 6.13 0.4523 

81 0.322 0.3741 

100 0.161 0.3683 

144 0.161 0.2863 

Table 1 : Correlation Parameters Estimated by the Kriging Method for approximating the 

function given by (4) 

The value of θ for the Kriging method undergoes sharp changes when the number of input points 

change from 64 to 81 and from 81 to 100. This corresponds to those points in Figure 2 when the 

rate of convergence of the Kriging method also changes. In comparison, the shape parameter 

estimated by the DKG method decreases uniformly (Table 1) and the error in the DKG method 

also decreases uniformly (Figure 2). This numerical example illustrates the advantage of the GPS 

algorithm for determining the optimum value of θ over the modified Hooke and Jeeves algorithm 

used in DACE. 

The error in approximation of the PSC method is initially constant, as shown in Figure 2, 

and decreases as the number of input points exceeds 30, finally decreasing spectrally when the 

number of inputs increases beyond 60. In contrast, the error of approximation of the ASC method 

does not change for any given number of input points. The sinusoidal variation of the function 

along the x axis is satisfactorily reconstructed, but the cosine waves in the y direction are not 

recognized all together, as is shown in the approximation of the hypersurface by the ASC method 

in Figure 3. The ASC method initially operates on a mesh where the collocation nodes lie along 

the boundaries and the centerlines of the input domain (as seen in Figure 3). Because of the 

adequate representation of the sinusoidal values at the boundary and along the centerlines, the 

hierarchical surplus falls below the threshold value and input nodes are not successively refined 

on the interior of the domain. Hence, the hypersurface reconstructed by the ASC method is 

constant with respect to the coordinates along the y axis causing an aliasing error. The sinusoidal 

variation of the function along the x axis is satisfactorily reconstructed, but the cosine waves in the 

y direction are not predicted by the ASC method. 
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To appropriately characterize the convergence of the ASC on a smooth function, the aliasing error 

is eliminated by introducing slight phase-shifts in the sine and cosine waves of the function, 

 

 2)5.04cos()25.02sin(),( +++= yxyxf ππ  (17) 

 

where x and y range from 0 to 1. The aliasing error seen in Figure 3 does not appear in this function 

because the boundaries of the domain no longer trace a simple sine wave. The Newton–Cotes grid 

in Figure 3 does not line up directly with the sine wave so grid refinement occurs on the interior 

of the domain away from the centerlines and the sum-of-squares error converges per the theoretical 

expectation when the number of input points is greater than 20, which is shown in Figure 4 . 

2.5.2 Hypersurface Constructed from Irregularly Spaced Input Points 

In a computational experiment, it is possible to specify the input points in several different 

ways. Input points can be specified at the nodes of a structured grid, i.e. at strictly regular intervals 

along each axis. In sampling methods like Latin Hypercube Sampling Method, LCVT method 

input points are distributed uniformly along the domain, although the points may not be necessarily 

specified at strictly regular intervals along each axis. The resulting input grid, in such a case, is 

unstructured. Because in a multi-scale model it is not always possible or advisable to perform 

meso-scale experiments at strictly regular intervals in the parameter space, the input grid of a 

metamodel may not necessarily be structured. Therefore, a metamodeling approach which is fairly 

insensitive to the distribution of input points is preferable. In this section, a comparison is made 

between the hypersurfaces created by regularly spaced input points and irregularly spaced input 

points using the RBFANN and Kriging methods. Note that the PSC method is trained from inputs 

placed at specific locations in the input domain, while the ASC method and the DKG method are 

integrated with a sampling strategy and are therefore not tested in this section. 

To train the RBFANN methods and the Kriging methods, the harmonic function is considered. 

Here, the input points are chosen at random within the domain. Because the location of a given 

number of input points in the domain is not unique, five such random input distributions are used 

to calculate the average normalized sum-of-squares error, while the standard deviation of the error 

for the input distributions (for a fixed number of input points) is used to obtain a prima facie 

measure of the confidence interval. The average error is then compared to the error calculated from 
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the approximation of a structured grid of training points. Figure 5 show the rate of convergence of 

the error for the RBFANN and Kriging methods respectively. 

     The convergence rates shown in Figure 5 demonstrate that structured grids give the lowest error 

for the given harmonic function. However, the convergence of the Kriging Method trained with 

an unstructured grid of sample points closely follows the convergence when using a structured 

grid of input points. However, if the number of input points increases beyond 81, the rate of 

convergence of the RBFANN method trained with regular input points is significantly different 

from that trained with random input points. Because the current architecture of the RBFANN uses 

more Gaussians than the number of input points, the RBFANN is sensitive to the distribution of 

input points. Thus, the rate of convergence of the current RBFANN model not only depends on 

the number of training points, but also on the location of the input points in the domain. Unless 

otherwise mentioned, an RBFANN method will be trained with regularly spaced inputs in 

subsequent sections of the present work. 

2.5.3 Reconstruction of a Hypersurface from a Noisy Data 

Noise is unavoidable in solutions obtained from computational and physical experiments. 

While it is possible to filter out noise from any approximation obtained from a metamodel with a 

pre/post processing algorithm, additional errors may be added if a filter is used. Therefore, a 

metamodel that is relatively insensitive to noise is preferred. 

To analyze the metamodels’ response to numerical noise, each of the metamodels is given a 

fixed number of inputs from Equation (4) and a (white) noise of maximum amplitude 0.1 is 

superposed onto the training samples. The metamodels are then used to predict the hypersurface 

of (4). The contour plots for each of the reconstructed hypersurfaces are shown in Figure 6 

The hypersurface predicted using the RBFANN method is noise-free. Because an RBFANN 

filters out all frequencies beyond a certain limit, it can filter out the noise components most 

effectively. As seen in Figure 6, the hypersurfaces predicted using the SC methods are noisy 

because the PSC and ASC are interpolation methods in which the reconstructed hypersurface must 

pass through all the values given at the training points exactly. Also, the Kriging and DKG methods 

have an inherent mean-structure which filters out the noise partially, but the process of 

minimization of the departure from the local fit result in an interpolation. Therefore, as can be seen 

in Figure 6, the noise from the training data is retained in the hypersurface predicted by these 



www.manaraa.com

20  
 

methods. This section thus demonstrates that there may be cases of noisy input data which may 

not be satisfactorily reconstructed by the SC methods and the Kriging family of methods. Unless 

otherwise mentioned, the training data in the subsequent sections of the work is noise-free. 

2.5.4 A Radially Symmetric Steep Gradient Test Function 

The previous examples provided valuable insight into the convergence of the metamodels 

for a smooth function. To study the response of the metamodels to a hypersurface with steep 

gradients localized in a region in the interior of the input domain, consider the function, 
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and x and y range from 0 to 1. This function is an integral of Eq.(65) from [38]. The contours of 

f(x,y)=constant are radially symmetric with respect to the origin. Steep gradients arise along the 

arc 3.022 =+ yx ; while the hypersurface varies more slowly as the distance from the arc increases. 

The exact hypersu rface is shown in Figure 10 (a). 

Figure 7 shows the convergence of the errors of the metamodels with respect to the number of 

input points. In the convergence plot, the convergence rates for the metamodels are similar if the 

number of input points is below 900. However, the magnitude of the error is higher for the SC 

methods because the nodes are concentrated along the boundaries and centerlines of the domain, 

while the regions of high gradient are radially symmetric. The input points are therefore not 

collocated with the highly non-linear regions of the hypersurface and the local features of the 

hypersurface are therefore not well resolved. The maximum values of the function are 
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underrepresented when using the SC methods and oscillations occur. These oscillations increase 

as the distance between a point and the arc 3.022 =+ yx  decreases resulting in the corresponding 

higher local errors seen in Figure 9 (a) and (b). 

Figure 6 shows that the hypersurfaces reconstructed by the RBFANN, Kriging and the 

DKG methods also display spurious oscillations, but these oscillations are smaller compared to 

those seen in the PSC reconstruction. When the number of input points is greater than 900, the 

PSC method converges exponentially because a larger number of input nodes fall on the arc 

containing the steeper gradients. If the number of input points increases beyond the scope of this 

study (>103), the ASC method converges exponentially because of the increased number of nodes 

near the steep gradients. An example of the node distribution for such a case (i.e. N>103) is shown 

in Figure 8. 

2.6 ANALYSIS OF CONVERGENCE BEHAVIOR OF THE METAMODELING 

TECHNIQUES FOR EMPIRICAL DRAG MODELS 

In addition to specific analytical functions designed to quantify the metamodels’ 

approximation error on smooth harmonic functions and steep interior gradients, empirical drag 

models are considered. The hypersurfaces of these functions are expected to be similar to those of 

the closure models that the metamodeling techniques would be required to approximate in a multi-

scale modeling framework. 

2.6.1 Boiko’s Model for Drag on a Particle in a Shocked Flow 

The first drag model considered is a model proposed by Boiko et. al. [32], and is given by 
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This function includes the effects of particle Reynolds number, Re=|vf−vp|dp/ν, and relative 

Mach number, M=|vf−vp|/_Tf, in the drag coefficient equation. The model is limited to relative 

Mach numbers of M≤1.2and Reynolds numbers of Re≤1 ×10000. However, for the present study, 

the model is considered to apply for 0.1 ≤M≤3and 100 ≤Re≤10000. The macro-scale EL code in 

[25] uses this empirical function to compute the particle drag coefficient. 
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The drag predicted by this model has two sharp zones of transition: at transonic Mach 

numbers ranging from 0.5<M <1.5 and at Re<200 when the flow changes from viscous Stokes’ 

flow to an inertia dominated flow. The contour of the hypersurface of this figure is shown in Figure 

11(a). 

The rate of convergence of the error of the metamodels with respect to the number of input 

points is shown in Figure 12. The function is most accurately represented by the SC methods. This 

is because in the SC methods collocation points are more concentrated close to the boundary Figure 

3. The sharpest transition region in the hypersurface in Figure 11 lies along the low Re boundary. 

Because the concentration of nodes in the SC methods coincide with the highly non-linear regions 

of the hypersurface, the SC methods most accurately represent the function. It can be further 

observed from Figure 11 that among the SC methods, when the number of input points is below 

400, the PSC method best approximates the hypersurface. This is because the high order global 

basis functions in the PSC method capture the flatter portions and smooth transition regions more 

accurately than the lower order local basis functions used by the ASC. If the number of input points 

is increased beyond 400, the ASC method is more accurate. This is because of the adaptive 

refinement based sampling strategy in the ASC method, which results in higher number of input 

points in the two transition zones and the ASC method converges exponentially. 

As shown in Figure, the magnitude of the error of approximation by the RBFANN, Kriging 

and DKG methods is higher than the SC methods. In the RBFANN and the Kriging method, the 

predicted hypersurface shows spurious oscillations (from Figure 14). The magnitude of local error 

is highest for the Kriging method and the RBFANN method, while the magnitude of local error is 

higher for the DKG method than the SC methods. An important observation in Figure 13 is that 

unlike the SC methods, the hypersurface obtained from the other metamodels is most erroneous 

along the transition region from low Re to high Re. This implies that unlike the SC methods, the 

number of input points for the other metamodeling techniques in these regions is not adequate to 

represent the sharp transition from low Re to high Re. The number of training points is uniformly 

distributed throughout the domain, unlike the SC methods. Similarly, the RBFANN methods and 

the DKG methods are also trained using regularly spaced training points and hence the error of 

approximation of the RBFANN method, the Kriging method and the DKG method is higher than 

the SC methods. 
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2.6.2 Loth’s Model  for Drag on a Particle in a Shocked Flow 

To further investigate the ability to capture steep gradients in the interior of the domain, 

consider the drag model proposed by Loth et. al.[33]. This model also corrects for high particle 

Mach and Reynolds numbers but over a wider range, Re≤1 ×105 and M≤5, 
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where C and G are defined as 
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The function produces very steep gradients arranged in a series of steps in the interior of the 

domain. The contour of the hypersurface of (18) is shown in Figure 14 (a).  

As shown in Figure 15, most of the metamodels show a first order convergence rate in the 

normalized sum-of-squares error, but the ASC method converges exponentially. Similar to the 

drag model discussed in the previous section, because the adaptive refinement algorithm in the 

ASC adds additional training nodes at highly non-linear regions in the hypersurface, the ASC 

method converges exponentially. 

As opposed to the function given by Boiko, many of the complex characteristics of Loth’s model 

lie in the interior of the domain as can be seen in Figure 14. But from Figure 3, it can be seen that 

the number of nodes of the PSC method are scarce in the interior of the domain. This lack of 
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training data along with the requirement that the approximation be exact on the training nodes 

causes spurious oscillations in regions of high gradient Figure 16. Because the Kriging and DKG 

methods also interpolate the hypersurface through the available inputs, spurious oscillations can 

also be seen in the hypersurface predicted by the Kriging method and the DKG method, and is 

shown in Figure 14. The oscillations in the DKG method is more localized than the Kriging method 

Figure 16. To investigate this, the correlation model used in the DKG method is studied, and it is 

found that for any given number of input points, the DKG method approximated the hypersurface 

using a General Exponential correlation model. The correlation model used in the Kriging method 

is a Gaussian model, but a General Exponential correlation model is used in the DKG method. A 

General Exponential model is more localized than a Gaussian and the use of the General 

Exponential correlation model approximates the localized features of the highly non-linear 

portions of the hypersurface. Because the RBFANN method also uses non-compact Gaussian basis 

functions, spurious oscillations can also be seen in the hypersurface approximated by the 

RBFANN in Figure 16. Furthermore, the ASC model also uses local basis functions and adaptively 

places additional nodes near the higher gradient regions of the input domain thus eliminating these 

oscillations in Figure 16. 

2.6.3 Tong’s Model for Drag on a Particle in a Shocked Flow 

Tong et. al. [48] have extended Loth’s model to include variations of particle shape and particle 

volume fraction, α,  
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where daC  is the drag coefficient calculated using Equation (22). This model illustrates the 

complex dependence of the particle drag coefficient on many different parameters, including the 

Knudsen number (set equal to 10 here), Ma (set to1 in here), Re (varied) and α (varied). The 

hypersurface is shown in Figure 17 (a) 

The convergence of the metamodels with respect to the number of input points is shown in 

Figure 18. The PSC method and the DKG method approximate the hypersurface most accurately. 
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Despite the higher concentration of input nodes in the low Re, high α boundary, the local basis 

functions in the ASC method do not approximate the function as well. The RBFANN method, 

employing Gaussians as basis-functions, over-fits the nearly linear variation of the drag coefficient 

at higher volume fraction and lower Reynolds number. Therefore, as is shown in the contour plots 

of the reconstructed hypersurfaces in Figure 17, oscillations arise when the RBFANN method is 

used to build the approximation. Similar to the case of the harmonic function in Section4, the 

Kriging model constructed using the DACE code does not converge monotonically. The value of 

the shape parameter as calculated using the Kriging method and the DKG method are compared 

against the number of input points in Table 2 . The value of the shape parameter, θ, in the Kriging 

method is equal to 0.76655 for less than or equal to 400 input points but increases sharply to 

θ=20past 400, where a non-monotonic jump is seen in the convergence plot in Figure 18. For the 

DKG method, the value of θ monotonically increases, indicating that the correlating model 

becomes more localized with an increased number of input points. This numerical example also 

illustrates the advantage of the GPS algorithm [48] for determining the optimum value of θ over 

the modified Hooke and Jeeves algorithm use in DACE (see also Figure 19). 

 

Number of Inputs θ (Kriging) θ (DKG) 

36 0.76655 0.9913 

64 0.76655 1.3370 

81 0.76655 2.7159 

100 0.76655 2.5089 

144 0.76655 2.8116 

225 0.76655 3.5402 

324 0.76655 5.8234 

400 20 6.6144 

529 20 8.3136 

625 20 9.0073 

Table 2 : Correlation parameters estimated by the Kriging method and the DKG method to 

approximate the hypersurface given by (4) 
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2.7 CONCLUSION 

The performance of five metamodeling techniques, the PSC, ASC, RBFANN, Kriging and 

DKG methods, is compared for use as the coupling algorithm or a metamodel in a multi-scale 

solver. The magnitude and the rates of the representation error of each of these methods has been 

characterized by their sum-of-squares error and the local errors. 

For a large number of training points, the SC methods generally approximate most of the 

hypersurfaces most accurately. In particular, the adaptive refinement of the ASC method around 

steep gradients on the interior of the input domain captures the complex regions of high gradient 

in the hypersurfaces of the empirical drag functions tested. But the number of input points required 

to accurately predict a hypersurface using the SC methods is roughly equal to or more than 100 

for most of the hypersurfaces. Because in a multiscale modeling framework, input points 

correspond to high resolution meso-scale computations, generation of such a high number of input 

points is expensive. Additionally, both the PSC and ASC methods are constructed using a strict 

predetermined nodal architecture and lack the flexibility of the Kriging and the RBFANN methods 

with respect to placement of input data. For example, with the SC-based methods, expanding the 

parameter space would entail discarding the input from a previous set of data or introducing 

additional interpolation errors. This would result in waste of computational time and resources 

when an expanded parameter space is required. 

The input points of the RBFANN and the Kriging methods can be randomly placed 

throughout the domain with little or no effect on the convergence of the metamodel, as seen in 

Section4.3. Because of this flexibility, the parameter space can be expanded to include a larger 

domain of approximation while continuing to utilize previous data. However, the RBFANN and 

Kriging methods have the highest sum-of-squares error in approximating most of the functions 

tested and do not converge at as high of rates as the SC methods. Additionally, the Kriging method 

using the DACE code does not converge monotonically in some cases. The parameter estimation 

technique integrated within the DACE code (i.e. the use of modified Hooke and Jeeves algorithm) 

leads to the selection of a local extremum value of the shape parameter θ as the global extremum 

in the maximum likelihood estimation process. 
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The non-monotonic convergence of the Kriging method is circumvented in the DKG 

method by a Global Pattern Search (GPS) algorithm using a maximum likelihood estimator with 

a penalty function and by the use of dynamic selection of correlation models and mean structure. 

The DKG method is not only monotonically convergent for all the functions considered in the 

current work, but at roughly 100 input nodes, has either the lowest sum-of-squares error or is close 

to the lowest (i.e. relative to the SC methods). Therefore, metamodels may be built using less than 

100 training points using the DKG method. Thus, for the functions approximated in the current 

work, the DKG method is the optimal choice to serve as the coupling algorithm for the multi-scale 

solver. 

  



www.manaraa.com

28  
 

 

 

 
Figure 2 : Error plot showing the convergence rates on approximating the smooth harmonic test function. 

 

 

 

 

 

 

Figure 1 : The grid in an SC method using (a) the zeroes of Chebyshev Polynomial (b) 
Newton-Cotes quadrature. 
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Figure 3 : The Hypersurface of the function (4) as approximated by the ASC method. 

 
Figure 4 : Error Convergence of the approximation of the Shifted Harmonic Test Function by the ASC Method. 
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Figure 5 : Error plot showing the convergence rates on interpolating the harmonic test function from using (a) an 

RBF method and (b) a Kriging method. The error bars show the standard deviation from the mean error for 
randomly distributed input points. 

 
(a) 

 
(b) 



www.manaraa.com

31  
 

 
Figure 6 : Representative Hypersurfaces for the noisy shifted harmonic function using (a) a PSC method, (b) an ASC 

method, (c) an RBF ANN, (d) a Kriging and (e) a DKG method. 
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Figure 7 : Error plot showing the convergence rates on approximating the radially symmetric test function using a 

PSC method, an ASC method, an RBFANN, a Kriging method and the DKG method. 

 

Figure 8 : Locations of nodes in a 12th level Smolyak sparse grid, refined adaptively using hierarchical surpluses 
with a maximum error of ε=0.01, interpolating the function. 
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Figure 9 : Local error plots for the approximation of the radially symmetric test function using (a) a PSC method, (b) 

an ASC method, (c) an RBF ANN, (d) a Kriging method, and (e) the DKG method. 
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Figure 10 : The (a) exact contours and representative contour plots for the test function from(14)using (b)a PSC 
method, (c)an ASC method, (d)an RBF ANN, (e)a Kriging method and (f)the DKG method. 
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Figure 11 : The (a) exact contours and representative contour plots for the drag coefficient of [32] using (b)a PSC 

method, (c)an ASC method, (d)an RBF ANN, (e)a Kriging method and (f)the DKG method. 
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Figure 12 : Error plot showing the convergence rates on approximating the drag model of Boiko et.al. [32] ] using a 

PSC method, an ASC method, an RBFANN, a Kriging method and the DKG method. 
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Figure 13 : Local error plots for the approximation of drag model of Boiko et al.[32] ]using (a)a PSC method, (b)an 

ASC method, (c)an RBF ANN, (d)a Kriging method and (e)the DKG method. 
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Figure 14 : The (a) exact contours and representative contour plots for the drag coefficient of [33] using (b)a PSC 

method, (c)an ASC method, (d)an RBFANN method, (e)a Kriging method and (f) the DKG method. 
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Figure 15 : Error plot showing the convergence rates on approximating the drag model of Loth [33] using a PSC 

method, an ASC method, an RBFANN, a Kriging method and the DKG method. 
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Figure 16 : Local error plots for the approximation of drag model of Loth using (a) a PSC method, (b) an ASC 

method, (c) an RBFANN method, (d) a Kriging method and (e) the DKG method. 
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Figure 17 : The (a) exact contours and representative contour plots for the drag coefficient of Tong using (b) a PSC 

method, (c) an ASC method, (d) an RBFANN, (e) a Kriging method and (f) the DKG method. 
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Figure 18 : Error plot showing the convergence rates on approximating the drag model of Tong et al. using a PSC 

method, an ASC method, an RBFANN, a Kriging method and the DKG method. 
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Figure 19 : Local error plots for the approximation of drag model of Tong at. al. [48] using (a) a PSC method, (b)an 

ASC method, (c) an RBF ANN, (d) a Kriging method and (e)the DKG method. 
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CHAPTER 3.  EVALUATION OF KRIGING BASED SURROGATE MODELS 

CONSTRUCTED FROM MESOSCALE COMPUTATIONS OF SHOCK 

INTERACTION WITH PARTICLES 

3.1 INTRODUCTION 

3.1.1 Motivation and Relevance 

Multiscale problems with distinct meso- and macroscales appear in several important  engineering 

applications, e.g. the dynamics of particle-laden gases [1,2], deformation of heterogeneous 

materials such as bones [3–5], concrete [6,7], heterogeneous explosives[8–11], sediment transport 

in river beds [12], and meso-scale models of blood flow[13]. In such problems, computational 

approaches can typically resolve only a limited range of length and time scales. The unresolved or 

subgrid scales are coupled to the macroscale using a variety of multiscale modeling frameworks 

such as patch-dynamics [14,15], heterogeneous multiscale modeling [16–19], multigrid methods 

[20,21], wavelet-based methods [22–24] and others [25].  In most multiscale modeling 

frameworks, the subgrid scale physics is modeled using “closure laws” in homogenized (volume 

averaged/ filtered/coarse-grained) macroscale systems of equations. Traditionally, such closure 

laws were obtained from physical experiments, canonical theoretical constructs or 

phenomenological arguments. With increasing computational power and improved physical 

models and algorithms, it is now possible to derive closure laws from highly resolved mesoscale 

simulations. This work addresses the issue of efficient and accurate closure model construction 

from highly resolved meso-scale simulations in the context of shocked particle-laden flows.  The 

techniques examined in this paper can be applied generally to multi-scale modeling problems 

where there is a distinct separation of scales and the macro-scale and meso-scale can be computed 

using continuum thermo-mechanical descriptions.    

3.1.2 Closure Models for Bridging Scales in Multi-scale Problems 

A generalized framework for solving multiscale problems is the heterogeneous multiscale 

modeling  (HMM) approach [16–19]. In HMM, the macroscale  variables are defined by the vector 

A and satisfy the system of equations given by [19] 
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 𝐅𝐅(𝐀𝐀,𝐃𝐃) = 𝟎𝟎 (24) 

 

where F is the macroscopic operator. D is the information at the macroscale, which depends on 

the mesoscale interactions and needs to be provided to close Equation (1). Once D is known, A 

can be determined using Equation (1)  

The mesoscale state variable a is a solution of the system of equations given by [19]  

 

 0af
b
=)(  (25) 

 

where f is a mesoscale operator and 0 is the null-vector. In the mesoscale system of equations, b 

represents the constraints (e.g.  boundary/initial conditions) on the mesoscale model; it is typically 

prescribed by local macroscale dynamics. The HMM framework allows two-way coupling 

between the meso and the macroscales, i.e., the macroscale supplies the constraints b to the 

mesoscale model and the mesoscale returns the missing information, D to the macroscale model 

in form of a closure law. A closure law is a model of the form 

 

 𝐃𝐃 = 𝐷𝐷(𝐛𝐛) (26) 

 

where the constraints b define the parameter space for D. Closures can be obtained through 

physical experiments which are expensive and may only cover limited regions in parameter space. 

An alternative, pursued in this and other works [3–5,7,30–35] is to construct D using resolved 

mesoscale simulations. Theoretically, large ensembles of meso-scale simulations can be used to 

collect quantitative information that can be used to construct closure laws. In practice such 

simulations are also limited by computing resources and fidelity of models. Therefore construction 

of closure from numerical experiments must contend with sparse datasets. 
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To compute D from mesoscale computations, either a concurrent coupling or a sequential coupling 

strategy for connecting the scales can be used.  In a concurrent strategy [19, 26,36] the macroscale 

computations are performed for one time step at all the spatial computational sub-volumes of the 

discretized macroscale model. The macroscale field then supplies boundary conditions to 

mesoscale computations. Mesoscale computations are performed — perhaps in selected sub-

volumes — to compute the closure terms. The macroscale model uses these closure terms to 

advance the computation to the next time level. A bottleneck in this approach is that the highly 

resolved mesoscale computations are expensive. It is generally not possible to perform mesoscale 

simulations within each macroscale control volume for each time step. Alternatively, in a 

sequential strategy [7,30] mesoscale computations are performed for a range of anticipated flow 

conditions a priori. A numerical model for the closure laws are constructed from these mesoscale 

experiments. The simulation-based closure model, also known as a metamodel or a “model of a 

model” [36–38] serves as a surrogate for the meso-scale (subgrid or unresolved) dynamics in the 

macroscale computations. The macroscale computations utilize the numerical closure models at 

each time step in each sub-volume of the macroscale domain.  

3.1.3 Construction of Surrogate Models for Shocked Particle-laden Flows 

For the particular problem of shocked gas-particle flows[1, 31], the number of particles in the flow 

is so large that macroscale models cannot explicitly track the dynamics of each such particle. 

Macroscale computations are performed using Eulerian-Lagrangian [40] and Eulerian-Eulerian 

[41] approaches. In the Eulerian-Lagrangian (E-L) method, the fluid phase is computed in the 

Eulerian frame while particles are tracked in Lagrangian fashion. In the interest of computational 

tractability, particularly for large ensembles of particles, E-L methods typically track 

“computational” particles: pseudo-particles that are agglomerates of a large number of  physical 

particles ([35,40,42]).The computational particles are modeled as singular point sources which 

couple with the carrier fluid through momentum exchange modeled via source terms (D) in the 

macroscopic fluid equations(Figure 20a).  These exchange terms depend on the local macroscopic 

conditions, e.g. shock strength and particle loading, which define the parameter space for obtaining 

the closure law in the form given by Equation (3).  

There are several semi-empirical drag laws available to close the macroscale gas-particle 

momentum equations [43–49]. These drag laws are developed via experiments performed in a 
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limited parameter space and extrapolated to other regimes. In previous work [33,35,43,50] closure 

models were constructed and used in the multiscale framework for gas-solid flows. In [43] an 

Artificial Neural Network (a multilayer perceptron) was used to construct the surrogate model. In  

[50] it was shown that depending on the surrogate model to be constructed, ANN-based techniques 

require an unduly large number of mesoscale simulations to construct surrogates. The burden of 

computational cost in surrogate based multiscale modeling approaches lie in: (a) the number of 

mesoscale computations needed to construct a reasonably accurate surrogate model and (b) 

construction of the surrogate model from the computed data. Of these two, for typical 

metamodeling techniques, the computational cost of the latter is negligible compared to the cost 

of performing computationally intensive mesoscale simulations. Recent work [50] showed that 

Kriging based methods provide accurate, efficient approaches for constructing surrogate models 

from modest numbers of meso-scale simulations. 

3.1.4 Focus and Novelty of this Work 

Developing metamodeling techniques that provide robust surrogates using sparse data sets is an 

active field of research [38,51–53]. In previous work [50], the performance of several candidate 

metamodeling techniques was analyzed. This was done for several canonical drag laws in the 

particular context of shocked particle laden gases. Among the different metamodeling techniques 

tested, viz. stochastic collocation techniques [54,55], radial basis functions [56–60] and the 

Kriging family of methods, the Dynamic Kriging Method [36,37] (DKG) emerged as the best 

approach. DKG was shown to converge monotonically for several model closure laws even when 

the number of input points were low. However, in the previous analysis, the study of the 

convergence of metamodeling techniques was restricted to analytical functions, including 

canonical drag laws. The current work extends the effort in [50]. Instead of analytical functions, 

the construction of surrogate models is carried out from resolved mesoscale computations using 

state-of-the-art [36] Kriging-based methods. But Kriging methods that rely on interpolation, 

including DKG are known to experience difficulties with noisy data [50,61,62]. Because high 

frequency noise in the input data is inherent to numerical experiments, a fitting method called the 

Modified Bayesian Kriging Method (MBKG) [61,62] is  evaluated alongside the DKG method to 

construct surrogate models from numerical experiments.  
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This is the first attempt, to the authors’ knowledge, at constructing surrogate models for closure 

using the DKG and MBKG methods. In this paper, the relative merits and weaknesses of the two 

methods are analyzed. Furthermore, while metamodeling in the presence of noise in the input data 

has been studied previously, a large number of the studies assume particular nature of the noise 

[50,61]. In the current work, no prior assumption is made about the presence of noise in the 

numerically calculated input data. This work is a key step towards a full multiscale modeling of 

particle-laden flows using surrogate based closure laws obtained from mesoscale computations. 

3.1.5 Outline of the Paper 

The paper is organized as follows. In Section 2, the governing equations for the mesoscale 

computational model and the equations for the Kriging methods are outlined. To obtain surrogate 

models from mesoscale computations numerical experiments are performed. The description of 

the mesoscale computational set up, along with the algorithm for creating surrogates using the 

DKG and the MBKG methods is presented in Section 6. The mesoscale computational algorithm 

and Kriging methods are validated in Section 7.1. Section 7.2 describes the results of numerical 

experiments. The surrogates created from mesoscale computations using the Kriging methods are 

shown in Sections 7.3. The rate of convergence of the surrogates generated with respect to the 

number of inputs using the DKG methods and the MBKG methods are compared and key 

observations are presented in Section 7.3.3.  

3.2 COMPUTATIONAL MODELS 

There are two ingredients required to construct surrogate models from numerical experiments:  

1. A mesoscale computational framework to compute the drag around particles from resolved 

numerical computations. 

2. A metamodeling technique to construct a numerical closure law for the drag in the 

parameter space (defined by macro-scale conditions). 

In Section 3.2.1 , the computational framework for performing high-fidelity numerical 

experiments is described, while in Section 3.2.2 , techniques for constructing surrogate models 

from numerical experiments are outlined.   
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3.2.1 The Mesoscale Model 

3.2.1. 1 The Governing Equations  

In the mesoscale computations, the gas flow is modeled by the compressible Euler equations:  
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where ρ, ui, p are the density, velocity components and the pressure of the fluid respectively, while 

E = e + 1/2uiui and e are the specific total internal energy and the specific internal energy of the 

fluid. The equations are closed by the ideal gas equation of state given by 

 

 ( )1−= γρep  (28) 

 

where the specific heat ratio γ = 1.4. A well tested Eulerian code SCIMITAR3D [63–69] is used 

to solve Equations (27) and (28) and is described in the next section.  

3.2.1. 2 Numerical Framework 

The governing equations are spatially discretized on a fixed Cartesian mesh using a 3rd order 

Essentially Non-Oscillatory (ENO) [70] scheme and are marched in time explicitly using a 3rd  

order Runge-Kutta (RK) scheme. The procedure for tracking the interfaces of the solid particles 

and the application of the boundary conditions at the interface is summarized as follows. 

1. To define embedded objects in the flow a narrow-band level-set [71] method is used; this 

allows tracking the object interfaces in a sharp manner. The level set field, 𝜙𝜙𝑙𝑙 at any point 

is the signed normal distance from the 𝑙𝑙𝑡𝑡ℎ immersed object with 𝜙𝜙𝑙𝑙 < 0 inside the 
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immersed object and 𝜙𝜙𝑙𝑙 > 0 outside. The interface is implicitly determined by the zero 

level set fields, i.e. 𝑙𝑙 = 0 contour represents the 𝑙𝑙𝑡𝑡ℎ immersed boundary. 

2. Once the object interfaces are identified by 𝜙𝜙𝑙𝑙 = 0 contour levels, the no-penetration 

boundary conditions are applied using a variant of the ghost fluid method (GFM) [72].  

GFM relies on the definition of a band of ghost points corresponding to each phase of the 

interacting materials. The ghost points for the fluid phase are the points lying inside the 

embedded object (defined by 𝜙𝜙𝑙𝑙 > 0) and real points are those which are outside.  

3. Once these ghost points are identified, the next step is to populate the ghost field for the 

fluid. The ghost field is obtained by constructing least-squares interpolation of the field 

variables of real material points and by imposing the appropriate interfacial conditions [68] 

Once the ghost points are identified and the values of the flow variables (e.g. ρ, ui, p and 

E) at these points are populated with the least-squares field, the two-material problem can 

be converted to two single-material problems consisting of real fields and their 

corresponding ghost fields.  

The above approach, discussed  in detail in [63–69], is used to compute the flow variables 

and the drag on the particles in the flow field. Once the drag is calculated, surrogate models 

are constructed using the metamodeling techniques described below. 

3.2.2 Metamodeling Techniques:  

Metamodeling involves the estimation of an unknown function 𝑓𝑓(𝐱𝐱) which is known only at 

certain discrete and distinct points xj (j=1,2,…,N). The points xj (j=1,2,…,N) where the values of 

the function are known span the parameter space of the surrogate model. The set of the known 

values of the function and their locations, i.e. the set (xj, 𝑓𝑓(𝒙𝒙𝑗𝑗 )) are known as the inputs of the 

surrogate model and are used to construct the unknown function 𝑓𝑓(𝐱𝐱)  in the parameter space. 

Often, it is of interest to obtain the value of the function at selected locations in the parameter 

space, say 𝒙𝒙0 . The point 𝒙𝒙0 is called the “probe point” of the surrogate model, while the value of 

the function at the probe points, 𝑓𝑓(𝒙𝒙0 ) is called the output of the surrogate model.  

3.2.2. 1 The Kriging Methods 

Kriging methods for constructing surrogates combine a global (polynomial) model which fits to 

the given input points and a semi-variogram model which represent the local departures from the 



www.manaraa.com

51  
 

global fit [73]. The output of the surrogate model is the function, denoted by )(~
0xf  and  expressed 

as [36,74] 

 

( ) ( ) ( )∑
=

+=
r

l
ll Zpf

0

~
000 xxx λ  (29) 

 

where )(~
0xf  is the approximation to 𝑓𝑓(𝐱𝐱) at 𝒙𝒙 =  𝒙𝒙𝟎𝟎, 𝑝𝑝𝑙𝑙(𝒙𝒙0) denotes the l-th order term in a 

polynomial basis function of maximum order r and 𝜆𝜆𝑙𝑙 is the least-squares solution to the set of 

normal equations )()(~
jllj pf xx λ= , j = 1,2,…,N;  )(~

jf x  represents the overall trend or the mean 

structure [75] of the input points in the parameter space. The specific choices of r = 0 or r = 1 are 

called Blind Kriging or Universal Kriging, respectively [37]. In general, while constructing a 

Kriging model, the mean structure (i.e. the value of r) needs to be specified a priori. 

The second term in Equation (29), 𝑍𝑍(𝒙𝒙0) represents the correlation of nearby points with each 

other and is modeled as a Gaussian random process with zero mean and a covariance structure 

jqqj RZZE 2)]()([ σ=xx  j,q = 1,2,…,N, where 𝜎𝜎2 is the process variance. The correlation model 

𝑅𝑅𝑗𝑗𝑗𝑗 is of the form:  

 

( ) ( )∏
=

===
n

k
kkkqjjq dRR

1
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with a shape parameter θ, where 𝑑𝑑𝑘𝑘 = �𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑘𝑘𝑘𝑘� , k = 1,2,…,n, n being the dimension of the 

vector x.  Commonly used models of the correlation functions are listed in Table 3 [76]. Similar 

to the mean structure, construction of a Kriging approximation assumes a known covariance model 

specified a priori. Once a correlation function is specified, the value of θ may be determined by 

maximizing the following log-likelihood function of the model parameters [37] 
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where =  ⌊𝑓𝑓(𝒙𝒙1) 𝑓𝑓(𝒙𝒙2) … 𝑓𝑓(𝒙𝒙𝑁𝑁)⌋ ,  T
Tλλλ ...10=λ  and 𝐏𝐏 = 𝑃𝑃𝑗𝑗𝑗𝑗 = 𝑝𝑝𝑙𝑙�𝒙𝒙𝑗𝑗� . For a 

given mean structure and  correlation function,  Kriging provides an interpolation through the input 

points, i.e. .,...,2,1 , ),()(~ Njff jjj =∀= xxx  In addition to estimating )(~
0xf , the predicted 

variance at a point 0x , )( 0
2 xpσ can also be computed using the following equation [36]  

 

 𝜎𝜎𝑝𝑝2(𝒙𝒙0) = 𝜎𝜎2(1 + 𝐰𝐰0
𝑇𝑇𝐑𝐑𝐰𝐰𝟎𝟎 − 2𝐰𝐰𝟎𝟎𝐫𝐫𝟎𝟎) (32) 

 

where ( ) ( ) ( ) ( ) T
Nj RRRR xxxxxxxxr ,,...,,...,,,, 0020100 θθθθ= represents the 

correlation vector between the input points and the probe point and 𝐰𝐰𝟎𝟎 is the weight vector of the 

linear predictor equation given by ( ) fwx 00 =f~ . More extensive discussions on the choice of 

correlation functions and metamodeling using Kriging methods can be found in [36,76–78].  
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Correlation Function ),( kk dθγ  
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Table 3 : Common Correlation Models used in the Kriging Family of Methods 

 

3.2.2. 2 The Dynamic Kriging Method  

The Dynamic Kriging Method (DKG) was developed by Choi et al. [36,37] as an 

improvement over a general Kriging method; the  features of the algorithm are: 

1. Adaptive selection of the mean structure: Because a general Kriging model assumes a prior 

specification of the mean structure (i.e. the value of r), the accuracy in constructing a surrogate 

model hinges on a conjecture about the mean structure of the input data. In the DKG algorithm, 

three different polynomial models (models corresponding to r = 0, 1 and 2) are constructed. For 

each of the three models, a cross-validation approach is used to calculate the residue at the input 

points. The value of r which gives the minimum value of a cross-validation error, 

( )[ ] rlpf
N

j
jllj ,...,0, )(~

1

2
=−∑

=

xx λ , is used for constructing a surrogate model using the given 

inputs. Therefore, the algorithm obviates prior knowledge of mean structure of the input points 

and adapts to the behavior of the hypersurface in the vicinity of the input points. 

1. Adaptive selection of the correlation model: Similar to the mean structure, construction of 

a general Kriging model assumes a known correlation model. In the DKG method, for a given 
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value of r, seven different Kriging models are constructed using the correlation functions listed in 

Table 3. Among the 7 possible choices, the correlation model which maximizes the log-likelihood 

function in Equation (31) for the given input points is used for calculating ( )0
~ xf . Therefore the 

algorithm does not require the use of a pre-specified correlation model.  

2. Sequential Adaptive Sampling Strategy: In general in Kriging methods, to construct an 

initial surrogate model, a set of initial inputs are required. The subsequent input points for further 

computations are typically chosen by the user based on the regions of interest in the parameter 

space. Examples of sampling strategies include choosing samples at regular intervals, Latin 

Hypercube techniques [79], Latin Centroidal Voronoi Tessellation (LCVT) methods [80], etc. A 

majority of the sampling techniques are unsupervised in nature, i.e. the locations of the subsequent 

input points in the parameter space are independent of the regions of complexity of the 

hypersurface to be approximated. The DKG algorithm, on the other hand, is coupled with a semi-

supervised adaptive sequential sampling strategy. This strategy computes the predicted variance, 
2

pσ , at a large number of locations in the parameter space using Equation (32). Among these, the 

locations with the maximum values of 2
pσ are selected as new input locations for performing 

subsequent computations. The advantage of this sampling strategy is that the method circumvents 

performing large numbers of computations in regions of low gradient in the parameter space. 

Because the sampling strategy guides the user to provide inputs at highly non-linear regions of the 

surrogate, this feature is particularly useful in cases where numerical computations required to 

generate input data are expensive. 

In many cases, high-frequency noise is inherent in outcomes from physical/numerical experiments. 

Because the Kriging Family of methods (including DKG) interpolate through the data, surrogate 

models constructed retains the noise in the input data. A correction to high-frequency noise in 

DKG-based surrogates motivates the use of a Modified Bayesian Kriging Method (MBKG) for 

metamodeling. This method is presented in the next section. 

3.2.2. 3 The Modified Bayesian Kriging Method (MBKG) 

The MBKG method [61,62] assumes the inputs come from a stationary Gaussian random process, 

with a mean value of Pλ + Z and variance σ2β, i.e. 
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 𝑓𝑓(𝒙𝒙0)~𝑀𝑀𝑀𝑀𝑀𝑀(𝐏𝐏𝝀𝝀 + 𝐙𝐙,𝜎𝜎2𝛽𝛽𝐈𝐈) (33) 

 

where, as in the DKG method, Pλ represents the mean structure, and Z is modeled as a Gaussian 

random process with zero mean and covariance Rxx 2)]()([ σ=qj ZZE  , R being the spatial 

correlation of the input points, given by Equation (30). When compared to DKG the new term in 

the MBKG method is σ2β which is the variance of the multivariate normal distribution. The 

unknown parameters in the MBKG model are λ, σ2, θ and β.  

The construction of a surrogate model using the DKG method is based on maximum likelihood 

techniques, i.e. the maximum likelihood function given by Equation (31) is used to determine the 

model parameters such as θ.  The MBKG method considers a probability distribution function over 

the weight space, representing the relative degrees of belief in different values for the model 

parameters [81]. The function is initially set to a prior distribution. The observations i.e., the input 

data are used to convert the prior distribution to a posterior distribution using Bayes’ theorem. 

Bayes’ theorem states that the posterior probability distribution of model parameters, 

𝑓𝑓(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) is proportional to the likelihood, 𝑓𝑓(𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) and prior probability 

distribution 𝑓𝑓(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) [82–85], i.e. 

 

 𝑓𝑓(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) ∝ 𝑓𝑓(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) × 𝑓𝑓(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) (34) 

 

The posterior distribution, which expresses the current belief about model parameters, can be used 

to obtain desired values of the model parameters, i.e., the mean of the posterior may be used to 

obtain a point estimate for the unknown parameter value. The posterior may also be used to reveal 

the amount of uncertainty that remains in the parameter value, i.e., probability intervals of the 

posterior may be used to define credible sets, which are believed to contain the true parameter 

value with a specified probability. 

Priors may be chosen such that they are conjugate priors wherever possible, i.e., the prior 

distribution may be from a parametric family that takes on the same functional form as the 

likelihood function. However, there may be scenarios in which a conjugate prior does not exist for 
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a given problem. In such cases, any distribution that reflects the prior knowledge about the 

unknown parameters may be used as priors. Bayes’ rule may still be used in such cases, but this 

has to be done using a numerical method. Markov Chain Monte Carlo (MCMC) is a numerical 

method that can be used to draw samples from high-dimensional and non-standard probability 

distributions. Under certain regularity conditions, MCMC may be shown to converge in 

distribution to samples drawn from the posterior distribution [83–85]; the current investigation 

uses the MCMC method to estimate the parameters for the prior distribution for the MBKG 

method.  

For the three unknown model parameters, λ, σ2 and β, semi-conjugate prior distributions are used 

to fit the MBKG surrogate model. For the parameter λ, the conjugate prior is a multivariate normal 

distribution and is expressed as  

 

 𝝀𝝀~𝑀𝑀𝑀𝑀𝑀𝑀(𝝁𝝁𝝀𝝀,𝜮𝜮𝝀𝝀) (35) 

 

where μλ and Σλ are the prior mean vector and the covariance matrix for the distribution. Similarly, 

the conjugate prior distribution for σ2 and θ are Inverse-Gamma distributions expressed as  

 

 𝜎𝜎2~𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝛼𝛼𝜎𝜎,𝛽𝛽𝜎𝜎) (36) 

 

 𝛽𝛽~𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝛼𝛼𝛽𝛽 ,𝛽𝛽𝛽𝛽� (37) 

 

where ασ, βσ, αβ, ββ are the prior parameters of the respective distributions. The parameters θ are 

embedded in the correlation matrix, R, and there is no known conjugate distribution type that may 

be used as prior distributions. The prior distribution for θ is chosen to be a uniform distribution 

and is expressed as  

 𝜃𝜃𝑗𝑗~U �𝑎𝑎𝜃𝜃𝑗𝑗 , 𝑏𝑏𝜃𝜃𝑗𝑗� (38) 
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where θj is the jth correlation function parameter and aθj and bθj are the prior parameters for θj. 

Using Equations (35) through (38), the joint posterior distribution for the MBKG formulation 

given in Equation (34) may be expressed as  
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The full conditionals for each of the model parameters, shown in [61], may be used to estimate the 

values of the model parameter for each MCMC sample. Because the MBKG method is evaluated 

using posterior distributions, the MBKG surrogate model is not a deterministic surrogate model 

but rather a surrogate that produces posterior distributions for the MBKG parameters. Therefore, 

a predicted response value does not have one deterministic value but rather has a distribution that 

gives the probability of the predicted response value being in any interval. The MCMC samples 

drawn from the predictive distribution of the response variable may be used to estimate any desired 

characteristics of the distribution, e.g., the mean, standard deviation and credible sets. The larger 

the standard deviation and the wider the credible sets, the more uncertainty there is in the predicted 

value. The credible sets come closer to the mean value with larger number of samples, i.e. the 

uncertainty in the true parameter value reduce remarkably with increasing values of N, the number 

of samples. Unless otherwise mentioned, in the current work, the term MBKG hypersurface is 

used to denote the mean response of the probability distribution of the predictions.  

The DKG method is an interpolation technique, while the MBKG method is a fitting method. The 

choice between the two classes of approximation is a trade-off between the bias and the variances 

of approximation [81]. For example, if the number of input points is too large or if the input data 

is noisy, the DKG method reduces the bias, but may overfit through the input points resulting in 

high variance. On the other hand, there may be cases where the MBKG method creates too 

“smooth” an approximation from the input points. In such cases, the variance may be low, but the 

bias may be considerably high. In the context of bridging scales in a multiscale-modeling 

framework, the general behavior of the closure terms in the parameter space is unknown. 
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Therefore, it is useful to examine both the methods as candidate metamodeling techniques and 

perform a critical analysis of the hypersurface approximated by both these methods. To create 

hypersurfaces for closure terms, mesoscale computations need to be performed; the method for 

performing mesoscale computational experiments is described in the next section.  

3.3 MESOSCALE COMPUTATIONS TO CONSTRUCT SURROGATE MODELS 

The mesoscale computational model consists of the gas phase and the particle phase. The particles 

are modeled as rigid cylinders immersed in a flow at various Mach numbers. For sufficiently high 

fluid velocities and small particles the viscous time scales are larger than the shock propagation 

time scales and drag on the particles is dominated by pressure forces. Therefore, the Euler 

equations are solved in the fluid phase. The mesoscale computational domain is illustrated in 

Figure 22. The setup consists of an array of 41 particles of diameter d, immersed in a uniform flow 

with (u,ρ,p) = (0.0,1.0,1.0). The particles are arranged in a square of 1.0×1.0 units and the local 

particle volume fraction ϕ is given by 

 

 2

4
41 dπφ =  (40) 

 

To vary the particle volume fraction, the diameter of the particle d is varied to achieve a 

target volume fraction. The simulation is initiated with an imposed shock of Mach number, Ma, 

located some distance upstream of the particles. The initial thermo-mechanical properties of the 

shocked gas (air) are computed from the Rankine-Hugoniot jump conditions. Slip boundary 

conditions are specified at the top and bottom surfaces of the computational domain while inflow 

and outflow boundary conditions are maintained at the left and right of the domain respectively.  

In the mesoscale computations, the dimensions of the square in which the particle cluster is 

arranged is selected as the reference length scale, lref  and is set to lref = 1.0. Corresponding to lref, 

a reference time scale, tref is defined as tref = lref / us , such that an incident shock of speed us traverses 

the particle cluster in tref =1 unit of time. Throughout the paper, the drag forces on particles and 

other transient quantities are presented as a function of a scaled time t* which is defined as the 

ratio of the non-dimensional time t (as in Equation (27)) to the reference time tref, i.e. t* = t/ tref. 
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Since the shock traverses the particle cluster in time of order tref =1 using the scaled time t* allows 

for comparison of the dynamics across the range of parameters (ϕ, Ma). 

Once the flow field is computed for given (ϕ, Ma)  the drag on an immersed object is computed 

by integrating the pressure p over the surface of the object. The drag force is computed individually 

for each particle in the mesoscale domain. A homogenized mesoscale drag 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) is used as 

an input to the surrogate model. Because mesoscale computations are expensive, numerical 

experiments can only be performed at selected values (Ma, ϕ) in the parameter space. The locations 

for performing mesoscale simulations in the parameter space are systematically selected in the 

following way: 

1.  First, the limits for the parameter space are specified. Numerical experiments are 

designed to be conducted for 1.1<Ma<3.5 and 1.28%<ϕ<20%. To start with N = N1 

numerical experiments are conducted at uniformly spaced locations in the parameter space 

to obtain 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) values. An initial surrogate model for 𝐹𝐹�𝐷𝐷 is constructed using the 

DKG and MBKG methods.  

2. The predicted variance 𝜎𝜎𝑃𝑃2 , given by Equation (32) is computed at 100x100 locations, 

uniformly distributed in the parameter space. A new set of N2 candidate locations with the 

highest values of 𝜎𝜎𝑃𝑃2 in the parameter space are selected for performing the next set of 

numerical experiments. An improved surrogate model is then constructed based on the 

new values of 𝐹𝐹�𝐷𝐷 at all the N = N1+N2 locations.  

3. This process is continued to a desired number of times k, each time adding Nk new points 

until a surrogate model of acceptable accuracy is constructed. Note that the number of 

points Nk is not fixed a priori and the user is free to choose the number of new mesoscale 

simulations based on the computational resources available.  

Surrogate models are constructed for Nk = 9, 24, 40 and 56 mesoscale computations for k = 1,2,3 

and 4 respectively. The location of the mesoscale computations at each step k are shown in Figure 

31. It may be noted that the bounds of the parameter space are determined a priori based on the 

anticipated flow conditions in a typical macroscopic computation. If the limits are found to be too 

restrictive, the parameter space can be augmented by performing new numerical experiments in 

an expanded parameter space. Once a spatio-temporally averaged drag is obtained at selected 

points in the parameter space, the next step is to use this information to create surrogate models 
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using metamodeling techniques. Both the DKG and the MBKG methods are examined for this 

purpose. The reason for the preference of one method over the other is not clear a priori and in 

general depends on the characteristics of the surrogate model to be generated. The decision of 

choosing one method over the other is based primarily on which method uses the least number of 

numerical experiments to construct a surrogate of desired accuracy. In other words, among the two 

methods, the one with a higher rate of convergence provides a more robust technique of 

constructing surrogates from mesoscale numerical experiments. 

3.4 RESULTS 

3.4.1 Validation of the Mesoscale Computational Model and the Metamodeling Techniques 

The accuracy of a surrogate model for the effective drag force acting on a cluster of particles 

depends on the accuracy of mesoscale computations as well as that of the metamodeling 

techniques. These two components are validated as follows. 

To study the accuracy of the mesoscale computations, the problem of interaction of a shock with 

a single cylinder is studied. The results are compared with benchmarks [86,87] in Section  7.1.1 

The accuracy of the metamodeling methods are ascertained by studying the error in 

approximating an analytical function. The hypersurfaces created by the DKG and the MBKG 

methods are compared with the exact hypersurface in Section 7.1.2 to quantify the error in 

metamodeling. 

3.4.1. 1 Validation of the Mesoscale Model: Interaction of a Shock with a Single Cylinder  

To validate the calculations of SCIMITAR3D [63–69] in the present context the interaction 

of a shock with a single cylinder is studied. The diameter of the cylinder is selected to be 0.1 non-

dimensional units and the center of the cylinder is placed at (1.1,1.0) inside a domain of size 3.0 x 

1.0. A planar shock of Ma = 2.6 is initially placed at 𝑥𝑥1 = 1.0. Slip boundary conditions are 

enforced at the top and bottom faces, while inflow and outflow conditions are maintained at the 

west and east faces of the domain respectively. The study is conducted for different mesh sizes of 

∆x= ∆y= 0.004, 0.0025, 0.001, 0.0009 and 0.00075.  

The drag on a cylinder is compared with the calculations of [86]. Figure 23 shows that the peak 

drag coefficient agrees well with the benchmark [86]. The initial part of the drag corresponds to 
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the pressure forces on the particle resulting from the passage of the shock and is in good agreement. 

The disagreement in the decreasing part of the drag curve is because the present calculations are 

inviscid while [86] used the Navier-Stokes equations. To further validate the computational model, 

the case of a shock of Ma=2.81 interacting with a cylinder is studied. The locus of the upper and 

lower triple-points of the shock-system created after the onset of Mach reflections are compared 

with  experimental observations of [88] and  calculations of [86]. Figure 24 shows that the current 

calculations are in excellent agreement with the experimental observations as well as the 

calculations of [86]. While more extensive validation of the code SCIMITAR3D is shown in [63–

69], the two problems chosen in this section validate the computations in the context of shock 

interactions with particles.  

3.4.1. 2 Validation of the Metamodeling Techniques 

In this section, the DKG and the MBKG methods for metamodeling are assessed for accuracy 

and convergence in representing an analytical function. For this purpose, the following function is 

used:  

 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝜋𝜋) cos(4𝜋𝜋𝜋𝜋) + 2; 0 ≤ 𝑥𝑥,𝑦𝑦 ≤ 1 (41) 

 

Values of the function at a set of N input points are supplied to the DKG and MBKG algorithms. 

Figure 5 shows the input points (for  N = 64) in the parameter space. As can be seen in the figure 

the distribution of input points is non-uniform. These input points were selected by the DKG 

approach using the adaptive sampling strategy described in Section 5.2.2. Both the DKG and the 

MBKG methods are then used to reconstruct the hypersurface of the function given by (41) using 

the same set of N input points.  

To calculate the error in prediction, a set of M = 100x100 probe points, distributed regularly inside 

the domain, are selected. The values of the function, 𝑓𝑓, as approximated by the DKG 

method/MBKG method at these M probe points are determined by interrogating the surrogate 

model. Contours of the hypersurfaces of 𝑓𝑓 as predicted using the DKG method and the MBKG 

method are shown in Figure 25b-c respectively. Both the DKG method and the MBKG method 

reconstruct the function reasonably well. The contours at (x,y) = (0.5, 0.7) are smeared out (Figure 

25c) for the MBKG method while the DKG approach produces sharper representation. This is 
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because the MBKG method fits the approximated function through the input points. This leads to 

diffusion of the contours around the inflection points.  Since the DKG approach interpolates 

through the data it produces better representation around the inflection points. The error in 

approximating the hypersurface by the two metamodeling techniques is calculated as:   
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where 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) is the exact value of the function given by Equation (41), 𝑓𝑓(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) is the value 

approximated by the DKG/MBKG method; M refers to the 100x100 probe points at which the 

error is evaluated.  The error for both the methods converge monotonically (Figure 25 d). However, 

the rate of convergence of the error for the DKG method is higher than that of the MBKG method. 

which indicates that the DKG method is a better metamodeling technique in this case. However, 

this assessment only holds for the case where the input data is devoid of any high frequency noise. 

It is well known that Kriging approaches that rely on interpolation through data experience 

difficulties in the presence of noise [61,62]. Since the MBKG method is formulated as a fitting 

method, it is expected to reconstruct a smooth hypersurface from noisy input data. It is premature 

to pick the DKG method over the MBKG method based solely on their ability to represent 

analytical functions. Therefore, for the current paper both methods, DKG and MBKG, will be 

examined to construct surrogate models from possibly noisy simulation-derived data.  

3.4.2 Mesoscale Numerical Experiments 

Mesoscale computational experiments are performed to provide inputs to the surrogate model for 

drag. Key aspects of the physics of shock interactions with particle clusters that need to be captured 

by a surrogate model are described for Ma = 3.5 and ϕ = 20% in the next section. The particle 

clusters are modelled as an array of cylinders; for the purpose of this paper, the terms particle and 

cylinder is used interchangeably in the ensuing sections, unless otherwise mentioned. 
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3.4.2. 1 Interaction of a Shock (Ma = 3.5) with a Cluster of Particles at the Mesoscale 

 While modeling the interaction of shock with particle clusters, the drag on individual particles are 

often modeled by correlations which are developed for isolated spheres [43–49]. However the 

dynamics of the interaction of a shock with a particle cluster is different from that of an isolated 

sphere. An ensemble of particles is characterized by reflections of shock within the ensemble, 

which leads to constructive/destructive interference of shock waves. For example for a shock of 

Ma = 3.5 interacting with an array of particles of ϕ = 20%, the incident shock is reflected from 

each of the first column of particles and individual bow shocks are formed (Figure 7a). At t* = 

0.25, the Mach stems of the first column of particles obliquely impact the second column of 

particles. Thus, particle 26 (see Figure 22) is impacted sideways by the respective Mach stems of 

particles 1 and 6 (Figure 22) on one hand and is also impacted by a part of the growing bow shocks 

reflected from particles 1 and 6 on the other hand. Because of the resulting shock focusing, the 

peak drag for particle 26 is higher than that for particle 1 (Figure 8a). As the flow further evolves, 

the reflected bow shocks from the first column of particles coalesce to form a single reflected 

shock, RS1 (Figure 7(b)).  The reflected shock from each subsequent column of particles interact 

with the adjacent column of particles upstream (Figure 7b). This leads to the development of a 

system of reflected shocks (denoted by RS2, RS3 and RS4 in Figure 7b). The flow is characterized 

by a series of slip lines (indicated as SL1 and SL2 in Figure 7b). As the shock traverses further 

through the array of particles, the downstream arrays of particles are impacted more obliquely 

compared to the particles upstream (Figure 7b-c). The flow is characterized by vortices of different 

sizes that are generated via the baroclinic mechanism. The smallest size of vortices correspond to 

those of a single particle. Several of these vortices merge to form larger vortices. In the absence of 

viscosity, the vortices are convected unhindered with the flow. At t* = 1.62, the incident shock 

system leaves the array of particles completely (Figure 7c). As the flow evolves, the dominant 

shock system can be observed to be similar to the shock around a single bluff body [89]. A major 

reflected shock, RSeff , an effective Mach Stem, MSeff , and an effective Triple Point TPeff are 

formed at t* >1.62 (Figure 7d). At this stage the particle cluster acts like an effective bluff body 

with the flow features resembling that of  a single cylinder as  shown in [89].  

3.4.2. 2 Selecting an RVE to Extract Data from the Particle Cluster 

Closure laws for drag on particles rely on homogenization of the momentum exchanged between 

the particle and fluid within an RVE. The selection of a suitable RVE in a general mesoscale 
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simulation is not a settled issue [90–95]. Typical RVEs chosen for regular arrays in steady smooth 

flows exploit the symmetry or periodicity of the meso-structure [96]. In shock-particle mesoscale 

computations, it is not a priori clear how to select RVEs. The transient structures (shock systems, 

slip-lines, vortical wakes) arise at different time and spatial scales because of shock-particle 

interactions in the computational domain. The shock strength is attenuated along the length of the 

particle array and a part of the incident shock is also reflected by the array. Therefore, the RVE 

needs to be carefully chosen to extract data to be passed through a closure model to a macroscale 

homogenized description of the system. In other words, the question to be addressed is: what is 

the shock seeing when it passes through an array of particles?  

In a macroscale computation, a physical particle contained within the “computational” particle is 

surrounded by other physical particles. The model for drag that is sought from the mesoscale model 

is one that applies to a “typical” particle embedded within the cluster. In mesoscale computations, 

the particles on the periphery of the cluster experience very different forces from those in the 

interior of the cluster. For example, unlike particles located in the outer periphery of the cluster 

(particles 1, 2, 3 etc.), the transverse shocks reflected from the boundaries of the domain (RS1, 

RS2, RS3 etc.) do not impact the five central particles (numbered as 13, 31, 32, 35, 36) directly 

(Figure 7). Also, the drag on the peripheral particles (Figure 8a) differ widely compared to the five 

central particles (Figure 8b). The shock profiles and the drag on the peripheral particles are an 

artefact of the finite size of the mesoscale geometry. To mitigate the influence of the edge effects 

in the cluster, a square subdomain circumscribing the central five particles is chosen as the RVE 

at the mesoscale. This allows data to be extracted for a representative set of particles embedded 

deep inside a cluster of particles.   

3.4.2. 3 Characteristics of a Homogenized Drag in an RVE  

To obtain the drag for a representative particle in the selected RVE, the transient drag 𝐹𝐹𝐷𝐷���(𝑡𝑡∗), is 

defined as the mean of 𝐹𝐹𝐷𝐷(𝑡𝑡∗) of the five central particles (particles 13, 31, 32, 35 and 36). Because 

𝐹𝐹𝐷𝐷���(𝑡𝑡∗) is a homogenized drag in an RVE, it can be interpreted to be the average effective force on 

a computational particle. The variation of drag on an individual particle 𝐹𝐹𝐷𝐷(𝑡𝑡∗)is compared with 

𝐹𝐹𝐷𝐷���(𝑡𝑡∗), in Figure 8(c). 

For an imposed shock of Ma = 3.5, two primary differences between 𝐹𝐹𝐷𝐷(𝑡𝑡∗) and 𝐹𝐹𝐷𝐷���(𝑡𝑡∗) are 

noticed. First, the peak value of the average drag 𝐹𝐹𝐷𝐷���(𝑡𝑡∗) is observed to be higher than that of a 



www.manaraa.com

65  
 

single particle 𝐹𝐹𝐷𝐷(𝑡𝑡∗). This is because the definition of 𝐹𝐹𝐷𝐷���(𝑡𝑡∗)  relies on the individual drag of five 

cylinders interacting with each other. Each of the cylinders is impacted by both the far-field 

incident shock, as well as shocks reflected from adjoining particles. Second, unlike 𝐹𝐹𝐷𝐷(𝑡𝑡∗) for a 

single particle, 𝐹𝐹𝐷𝐷���(𝑡𝑡∗) decreases with time. Shock attenuation through a system of particles has 

been observed previously [97–99]. Attenuation reflects the fact that  𝐹𝐹𝐷𝐷���(𝑡𝑡∗) represents the 

momentum exchange between the fluid and the cluster of particles. As expected, 𝐹𝐹𝐷𝐷���(𝑡𝑡∗) shows 

signatures of the shock-interactions due to neighboring particles as well as attenuation as the shock 

passes through the cluster. The average drag therefore captures the dynamics of shock-particle 

interactions in the cluster.  

3.4.2. 4 Selection of a Characteristic Mesoscale Time Scale for Averaging Transient Forces  

In constructing a surrogate model to supply closure terms to the macroscale the quantity of interest 

is the time-average of the transient drag 𝐹𝐹𝐷𝐷���(𝑡𝑡∗). 𝐹𝐹𝐷𝐷���(𝑡𝑡∗) is averaged over a mesoscale time, 𝑡𝑡∗�  as 

follows:  
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where 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) denotes the drag averaged over both space and time. One key issue in obtaining 

the time-averaged drag is the selection of the time sample, i.e. the value of 𝑡𝑡∗� . 𝑡𝑡∗�  is selected such 

that 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙)  does not vary for t*>𝑡𝑡∗�  . This is based on the assumption of equilibration inside 

each computational particle in the macroscale. Within the computational (i.e. 

effective/homogenized) particle, shock reflections from neighboring physical particles equilibrate 

faster compared to the passage time of the shock over the computational particle.  

In the particular example shown in Figure 7, it can be seen that at t t* = 1.62, the incident shock 

system clears the array of particles. The effective Mach stem and the effective triple point (shown 

in the figure as MSeff  and TPeff ) are located outside the array of particles. After t* = 1.62 the 

particles are subject only to shocks reflecting from adjacent particles, i.e. the influence of the 
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incident shock ceases to act on the particles. The flow around the five particles inside the array is 

seen to become steady for t* > 1.62 (Figure 7c and Figure 7d). Hence, for computing the time-

averaged drag the value of t* for which the incident shock system leaves the array of particles is 

selected as the characteristic mesoscale time 𝑡𝑡∗� .   

A spatio-temporally averaged drag on a representative particle 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) which is useful for 

macroscale computations depends on Ma and ϕ. Thus Ma and ϕ are the independent variables 

defining the parameter space for the surrogate model. For an RVE consisting of the five central 

particles, the effect of Ma and ϕ on  𝐹𝐹𝐷𝐷���(𝑡𝑡∗) and 𝑡𝑡∗�   are shown in the next section. 

3.4.2. 5 Effect of Parameters Ma and ϕ on 𝐹𝐹𝐷𝐷���(𝑡𝑡∗)    

To investigate the effect of Ma and ϕ on 𝐹𝐹𝐷𝐷���(𝑡𝑡∗), the flow as a function of time t* is compared for 

different values of Ma and ϕ. The results in this section indicate the range of physical phenomena 

that need to be captured in a surrogate model as Ma and ϕ are varied.   

The Effect of ϕ on 𝑭𝑭𝑫𝑫����(𝒕𝒕∗) 

This section examines the influence of particle volume fraction ϕ on the averaged drag in the RVE. 

The particle cluster is subjected to a shock of Ma 3.5 and the volume fraction ϕ is varied by varying 

the diameter d of the particles.  

The flow physics shows several distinctive characteristics when the particle volume fraction is 

varied. In Section 7.2.1, for ϕ = 20% (d= 0.04) shocks impacted the second column of particles 

sideways (Figure 7a). However, for ϕ = 1.3% because the particles are located further away from 

each other, normal shock systems impact the second column of particles (Figure 9a) as opposed to 

oblique shocks for ϕ = 20% (Figure 7a). Each cylinder develops its own system of reflected shocks 

and Mach stems (Figure 9a). At t* = 1.08, the reflected shocks from individual particles coalesce 

with each other and form a single reflected shock. Each subsequent column of particles develops 

its system of reflected shocks. The flow is characterized by the formation of several vortices 

corresponding to each cylinder in the flow field.  Because the separation distance between the 

particles is large compared to the diameter of the particles, almost all particles are characterized 

by individual vortical wakes, which do not interact with vortices from adjoining particles. Unlike 

in the case of ϕ = 20% (Figure 7 c), for ϕ = 1.3% (Figure 9c), at time t* = 1.62, the effective Mach 

Stem only slightly lags behind the incident shock. Furthermore, while for ϕ = 20%, t* = 1.62 is 
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the characteristic mesoscale time, for ϕ = 1.3%, the shock systems leaves the array of particles 

before t* = 1.62.  

To compare 𝐹𝐹𝐷𝐷���(𝑡𝑡∗) for ϕ = 1.3% and ϕ = 20%, a non-dimensional averaged drag on the cluster 

𝐶𝐶𝐷𝐷����(𝑡𝑡∗) is defined as follows. 
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equivalent diameter of the particle cluster. The peak value of 𝐶𝐶𝐷𝐷����(𝑡𝑡∗)is lower for ϕ = 1.3% 

compared to that for ϕ = 20%. (Figure 30). This is because, for ϕ =1.3%, particles are separated 

from each other compared to ϕ = 20% and shock reflections from neighboring particles do not 

strengthen the incident shock for ϕ = 1.3%. This demonstrates that similar to the normalized shock 

passage time, the averaged drag also depends on volume fraction of particles. Therefore, for 

particle clusters the volume fraction will serve as one of the independent variables of the parameter 

space. 

The Effect of Ma on 𝑭𝑭𝑫𝑫����(𝒕𝒕∗) 

This section examines the physics to be captured during the interaction of shocks of varying 

strengths with an array of particles with fixed volume fraction ϕ = 20%. The study is performed 

for in incident shock of Ma = 1.1. There are several features which distinguishes the case of Ma = 

1.1 with that of Ma = 3.5 discussed in Section 7.2.1. For Ma = 1.1, the flow behind the shock is 

subsonic, while for Ma = 3.5, the flow behind the shock is supersonic. The reflected shock 

emanating from the particle cluster travels back faster for Ma = 1.1 case compared to the Ma = 3.5 

case (Figure 7a and Figure 10a). The flow around each particle is more homogenous (Figure 9 b) 

for Ma = 1.1 than for Ma = 3.5 (Figure 7 b). The Mach stem lags behind the incident shock to a 

lesser extent for Ma  = 1.1 than for Ma = 3.5. The flow for Ma = 1.1 is characterized by very weak 

vortical structures and slip lines (Figure 10b). At t* = 1.62, the incident shock system travels well 

beyond the array of particles (Figure 10c).Therefore, 𝑡𝑡∗�  is less than 1.62 for Ma = 1.1. In summary, 

the drag experienced by representative particles in a cluster depends on both Ma and ϕ. The next 
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section describes the procedure for constructing surrogate models for drag in a 2-dimensional 

parameter space defined by Ma and ϕ.  

3.4.3 Surrogate Models from Numerical Experiments 

To construct surrogate models using metamodeling techniques, mesoscale computations are 

performed to calculate a unique value of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙)  for a given value of Ma and ϕ. At each of the 

locations, the set of values (Ma, ϕ, 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) ) comprise the inputs to the surrogate model. The 

inputs are used to train (i.e. to determine the unknown parameters in) the surrogate model. Once 

the parameters of the metamodeling techniques are defined, it can be used to construct a surrogate 

model for 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) as a hypersurface in the parameter space. 

3.4.3. 1 Surrogate Modeling using the DKG Method 

The surrogate model for 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) constructed using the DKG method is shown in Figure 33. 

The value of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙)  is minimum for Ma = 1.1 and ϕ =1.3%. Because 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙)  increases 

with increasing Ma and ϕ, the value of 𝐹𝐹�𝐷𝐷 is maximum for Ma = 3.5 and ϕ =20%. Furthermore, 

the variation of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙)  with Ma for a given value of ϕ increases with increasing ϕ. Similarly, 

the variation of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙)  with ϕ for a given value of Ma increases with increasing Ma.  

The local properties of the hypersurface depend on the value of N. The surrogate model constructed 

using N1 = 9 mesoscale computations is shown in Figure 33a. Mesoscale computations are 

performed at 8 points on the boundary of the parameter space and 1 point inside the parameter 

space (Figure 31).The hypersurface has a second-order mean-structure. Because only nine input 

points are used for the hypersurface (Figure 33a), localized departures from the mean structure are 

observed in the vicinity of the input data. These departures can be seen as kinks in the hypersurface 

in Figure 15a. These local deviations are alleviated as inputs are supplied to the DKG algorithm. 

For N = 24 (Figure 33(b)), the input points are located in closer proximity to each other (Figure 

31). The overlap between the support domains of the correlation models located at the input points 

is sufficiently high. Therefore, local peaks and troughs in the surrogate model for 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙)  are 

absent in Figure 33(b). However, a high frequency oscillation is seen in to arise in the hypersurface 

near the ϕ = 10% line.  In fact, as the number of inputs are increased, more high frequency 

oscillations are observed in the DKG-generated hypersurface (Figure 33(c) and Figure 33(d)).  
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The presence of high-frequency oscillations in the hypersurfaces constructed by the DKG method 

has also been observed in  previous work [50]. Because DKG is an interpolation technique with 

no smoothing parameter, if the input data for the DKG method is noisy, then the resulting 

hypersurface retains the high frequency noise. There are multiple possible sources for noise in the 

input data supplied to DKG. First, the discretization schemes introduce errors in the computed 

mesoscale solutions, which decay asymptotically with grid spacing and time step size. Second, the 

selection of sampling time 𝑡𝑡∗�  also introduces fluctuations in the input data. For example, in Figure 

30, the time varying response of the 𝐶𝐶𝐷̅𝐷(𝑡𝑡∗) is seen to be oscillatory. For Ma = 3.5 and ϕ = 20%, 

the value of 𝑡𝑡∗�  was selected to be 1.62. If the value of  𝑡𝑡∗�  is selected to be 1.62 ± 𝜀𝜀, where ε is an 

arbitrarily small number, the value of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) for Ma =3.5, ϕ =20% will also be slightly altered. 

In general for any given Ma and ϕ, 𝑡𝑡∗�  is heuristically determined. Any uncertainty in determining 

𝑡𝑡∗�  manifests as a noise in the input data, which translates to a noisy hypersurface using the DKG 

method. Additional numerical filters may alleviate noise from the hypersurface, but the filtering 

process may also entail further modeling errors. 

In bridging scales in a multiscale modeling framework, noise in a surrogate model hypersurface 

changes the local convexity properties of the closure terms. This motivates the use of a 

metamodeling approach that behaves well in the presence of noisy data. In the Kriging family of 

method, the Bayesian approach used in the MBKG method offers such insensitivity to noise.   

3.4.3. 2 Surrogate Modeling using the MBKG Method 

In this section, surrogate models for 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙)  are constructed using the MBKG method. Unlike 

the DKG method, the MBKG method does not entail a deterministic point approximation. Instead 

of a unique value 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙), the MBKG method constructs a distribution of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙)  with a 

mean and variance, as described in Section 5.2.3.  The mean hypersurface and those corresponding 

to 95% credible sets are presented in Figure 34 (a) through (d) for different value of N. Like the 

DKG method (Figure 33), the global properties of the hypersurfaces constructed using the MBKG 

method (Figure 34) are the same irrespective the value of N.  

An additional feature of the MBKG hypersurface is that, in addition to the closure terms expressed 

by the mean hypersurface shown, the surrogate models can also supply the value of uncertainty 

arising from limited input points. The uncertainty arises in determining the model parameters of 

the MBKG method. Thus, a 95% credible set implies that there is a 95% likelihood of the 
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parameters of the probability distributions in Equation (39)  lying in the interval defined by the 

credible sets.   

The characteristics of the mean hypersurfaces as well as those of the credible sets for  𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙)  

depend on the value of N. For N = 10, the credible sets are far apart from the mean hypersurface 

except at the input points (Figure 34(a)). In addition, as shown in Figure 34(a), the lower 95% 

credible set has a negative value of 𝐹𝐹�𝐷𝐷 almost everywhere in the parameter space. A negative value 

of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) implies that momentum is transferred into the flow field by the solid phase. 

Therefore, the closure terms generated using N = 10 can be physically unrealistic. However, as 

observed in Figure 34(b) through (d), when N is increased, the mean hypersurface and the credible 

sets are non-negative throughout the parameter space. The upper and lower credible sets for 

𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙)  are also seen to rapidly approach the mean hypersurface with increasing values of N 

(Figure 34(b) through (d)).  

A key observation from Figure 34 is that unlike the DKG method, for a given value of N, the 

hypersurface constructed by the MBKG method does not have high frequency oscillations. A 

detailed comparison of the hypersurfaces constructed using the DKG method and the MBKG 

method is presented in the next section. 

3.4.3. 3 Comparison of the DKG and MBKG Techniques for Constructing Surrogate Models 

from Numerical Experiments 

Mesoscale computations are expensive; each resolved computation takes several hours of compute 

time on a multiprocessor system. An ideal metamodeling technique should be capable of 

constructing surrogate models using as few mesoscale computations as possible. This is 

particularly the case when the dimensions of the parameter space increase or the mesoscale model 

is computed in 3DThe key issue is to determine how many mesoscale computations are needed by 

the DKG and MBKG methods to construct a surrogate model with a given error tolerance. This 

section analyzes the errors generated in the DKG and the MBKG methods in constructing 

surrogate models. In particular, the following aspects of the two metamodeling techniques are 

emphasized in this section.  

Local Approximation in the Parameter Space: A metamodeling technique should converge 

monotonically with increasing values of N at every point in parameter space. To compare the DKG 
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and the MBKG methods in this respect, the variation of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) with ϕ for a fixed Ma = 2.1 

and for different values of N is shown in Figure 35. Figure 21(a) shows the behavior of DKG and 

Figure 21 (b) shows that for MBKG. Unlike the value of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙)  estimated using the MBKG 

method, the value estimated using DKG decreases to a minimum for N = 56 and then increases for 

increasing N.  This indicates non-monotonic convergence at a given point in parameter space; this 

oscillation occurs because of the sensitivity of the DKG approach to high frequency noise in the 

input. In contrast, as shown in Figure 35 (b), when surrogate models are constructed using the 

MBKG method, 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) decreases monotonically with increasing values of N (as seen in Fig. 

21(b).  

Convergence of the Surrogate model: In the previous section, the DKG method was shown to 

oscillate about a mean value at points in the parameter space. In theory, an oscillatory sequence 

may still be convergent if the oscillations asymptotically approach a fixed point. Because 

mesoscale computations are expensive, it is desirable that the global error in the surrogate model 

converges monotonically with respect to the number of input data. Broadly, there are two error 

measures that can be used for studying the convergence. They are as follows. 

Relative Error Norm, 𝜀𝜀𝐿𝐿2
𝑟𝑟𝑟𝑟𝑟𝑟: The relative error norm uses the approximation of a surrogate model 

constructed using a (relatively) large number of input points, (say Nmax), as the benchmark. The 

predictions of surrogate models constructed from N < Nmax input points are compared with the 

prediction of a surrogate model constructed from N = Nmax. For Nmax = 64, 𝜀𝜀𝐿𝐿2
𝑟𝑟𝑟𝑟𝑟𝑟 is defined as 

follows.  
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where i = 1,2, …,M corresponds to the number of locations in the parameter space at which the 

predictions are compared (points marked in red in Figure 31). Because 𝜀𝜀𝐿𝐿2
𝑟𝑟𝑟𝑟𝑟𝑟 is defined using the 

surrogate model corresponding to N = Nmax as benchmark, no additional mesoscale computation 

needs to be performed to study the convergence of the metamodeling techniques. 
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Absolute Error Norm, 𝜀𝜀𝐿𝐿2: The absolute error norm involves performing additional mesoscale 

computations at selected locations in the parameter space. These extra computations are not used 

as inputs to the surrogate models but are set aside for determining the error in metamodeling. The 

value of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) computed at these M locations in the parameter space is compared with the 

value of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) obtained from the surrogate models. Let 𝐹𝐹�𝐷𝐷 be the value of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) 

computed by mesoscale simulations at the location (Mai,ϕi), i = 1,2,…, M. 𝜀𝜀𝐿𝐿2 is then defined as 

follows 
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Although 𝜀𝜀𝐿𝐿2 involves extra computations, convergence for 𝜀𝜀𝐿𝐿2with N is more demanding than 

convergence of 𝜀𝜀𝐿𝐿2
𝑟𝑟𝑟𝑟𝑟𝑟 with N. In fact, as will be shown below a surrogate model that converges in 

the 𝜀𝜀𝐿𝐿2
𝑟𝑟𝑟𝑟𝑟𝑟 sense does not necessarily converge in the 𝜀𝜀𝐿𝐿2 sense.  

The relative errors of the surrogate models constructed using both the DKG method and the MBKG 

method converge monotonically with N (Figure 35(c)). The rate of convergence is slightly higher 

for the MBKG method. This implies that the sequence of 𝜀𝜀𝐿𝐿2
𝑟𝑟𝑟𝑟𝑟𝑟 created for different values of N 

approaches a converged solution. However, 𝜀𝜀𝐿𝐿2
𝑟𝑟𝑟𝑟𝑟𝑟 is misleading in the context of constructing 

surrogate models from numerical experiments. As will be demonstrated below, the converged 

solution for the DKG method is not the true solution, i.e. the converged value of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) 

predicted by the DKG method for increasing values of N does not approach the value computed 

from mesoscale computations. 

To demonstrate this, M additional mesoscale computations are performed at the locations marked 

in red in Figure 31. The error, 𝜀𝜀𝐿𝐿2 , is computed for both the DKG methods and the MBKG methods 

and is shown in Figure 35(d). For the MBKG method, 𝜀𝜀𝐿𝐿2 is found to converge monotonically with 

N. Because both 𝜀𝜀𝐿𝐿2 as well as 𝜀𝜀𝐿𝐿2
𝑟𝑟𝑟𝑟𝑟𝑟 converge for the MBKG method, the predicted value of  

�
𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) approaches the solutions obtained from mesoscale computations with increasing 

values of N. For N > 24 for DKG, the predicted value of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) does not converge to the value 

obtained from the mesoscale computations.  This is in contrast to the convergence properties 
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obtained using 𝜀𝜀𝐿𝐿2
𝑟𝑟𝑟𝑟𝑟𝑟 . Therefore, additional computations beyond N = 24 do not improve the 

approximation of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙)  using the DKG method.  

The above behavior is in contrast to the convergence behavior of 𝜀𝜀𝐿𝐿2 for DKG studied in a previous 

work [50] and in Section 7.1.2. In Section 7.1.2  and in [44] the convergence properties of DKG 

was studied using analytical functions. In the absence of noise, for DKG, 𝜀𝜀𝐿𝐿2 was found to 

converge monotonically with N to the true solution of the analytical functions. However, for 

constructing surrogate models in this work, DKG is trained with realizations from mesoscale 

experiments, where the input data is noisy. The amplitude of noise is sufficiently high to affect the 

convergence of 𝜀𝜀𝐿𝐿2 for DKG. The MBKG method, on the other hand, is found to converge to the 

“true” solution irrespective of the presence of noise in the input data. Therefore, for MBKG 𝜀𝜀𝐿𝐿2 

converges both in the case of input data obtained from analytical functions as well as those 

obtained from realizations of mesoscale experiments. However, the convergence rate for MBKG 

is lower than for DKG for smooth functions.  

3.5 CONCLUSIONS 

This work demonstrates a method for the construction of closure models for macroscale 

computations of shocks interacting with particle clusters. The closure laws or surrogate (meta-) 

models are derived from resolved mesoscale computations by using Kriging based metamodeling 

techniques. In the current work, two variants of the Kriging Method, viz. the DKG method and the 

MBKG method are tested as candidate metamodeling techniques. The input for the surrogate 

models are generated using mesoscale computations for an array of cylindrical particles, each with 

diameter d, subjected to a shock of strength, Ma. It is shown that the parameter space appropriate 

for the metamodel is spanned by the Mach number and the volume fraction.  The SCIMITAR3D 

code is used to perform numerical experiments for various values of Ma and volume fraction, ϕ. 

A representative drag, obtained from the drag on particles averaged over space (using a suitable 

RVE) and time (using a characteristic mesoscale time scale) is computed for each combination of 

Ma and ϕ. This drag is used to compute a surrogate model for the momentum transferred by the 

mean flow to a computational particle in a macroscopic computation. 

Because mesoscale computations are expensive, to keep the computational cost low, a surrogate 

model needs to be constructed from as few training points as possible. In this regard, the choice 
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between DKG and the MBKG methods for constructing surrogates is found to be a trade-off 

between bias and variance in approximation. In the absence of noise in the training data, the DKG 

method converges faster than MBKG. However when inputs are generated from mesoscale 

computations, the input data may contain high frequency noise. In such cases, the MBKG method 

not only produces a hypersurface that is devoid of high frequency oscillations but also converges 

monotonically as opposed to the DKG method. Therefore, to construct surrogate models from 

numerical experiments in a multiscale modeling framework, Modified Bayesian Kriging is 

recommended.  

In ongoing and future work several extensions of the work presented here are being pursued. First, 

the investigation of appropriate choice of RVEs and time-averaging to extract data from the meso-

scale was commenced in this work; more extensive studies of this issue has been conducted and 

will be reported in a future publication. Second, the process of constructing surrogates is being 

accelerated by using a multi-fidelity approach, where “rough” surrogate models are constructed 

using coarse grid calculations and then corrected using small numbers of fine grid calculations. 

Third, additional physics at the meso-scale, for example the energy removed from the imposed 

flow by the fluctuating components of the field in the particle cloud is being included to take the 

closure term to higher order. Finally, three-dimensional and moving particle calculations at the 

meso-scale are required to obtain a more comprehensive closure model. 
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Figure 20 : (a) An illustration of the macroscopic computational model of supersonic flow over an cloud of particles 

[50]. The computational particles, each of which is an agglomerate of physical particles, are represented as 
dimensionless points coupled to the surrounding flow field. (b)  Schematic representation of a computational particle 

in an ENO Stencil in a PSIC Method [40]. Based on a first order weighting function, the source term in the 
governing equations for the grid point denoted by SW is SSE∝ ⌊𝒅𝒅𝒍𝒍 𝒅𝒅𝒃𝒃⌋W, where W is the momentum of the 

computational particle. 

 

 

 
(a)  

 
(b) 

 

Computational Particles 
in a Macroscopic Flow Field 
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Figure 21 : Schematic representation of a multiscale modeling framework using a surrogate modeling framework. 
Several mesoscale numerical computations are performed a priori ; these are used to construct surrogate model(s) 

that relate the unknown source term(s) in the macroscale solver to the local macroscopic field variables In course of 
macroscopic computations, the surrogate model is “probed” on the fly and based on local macroscopic field 

variables the surrogate model returns the unknown source term(s) to the macroscopic solver, serving as surrogates to 
high resolution mesoscale simulations in concurrent coupling multiscale modeling approaches. 

 

 

 

 



www.manaraa.com

77  
 

 

Figure 22 :  Description of the set up for numerical experiments; the domain of interest comprises a right moving 
shock of Mach Number, Ma. To the right of the shock is an array of 41 particles of equal diameter d inscribed in an 
imaginary unit square (of area A = 1). The volume fraction, ϕ, of the array of particles is given by 𝝓𝝓 = 𝟒𝟒𝟒𝟒𝟒𝟒𝒅𝒅𝟐𝟐/𝟒𝟒. 

The particles are numbered 1 through 41 as indicated in the figure. 

 
Figure 23 : Comparison of the coefficient of drag force, CD , on a cylinder as obtained from SCIMITAR3D with the 

computations of [86]; the shock Mach Number, Ma is 2.6. 

 

 

Shock of Mach Number, Ma 
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diameter d 

Density ρc, 
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Velocity uc, 

= [uc 0] 

Density ρi = 1, 
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Figure 24  : Comparison of the trajectory of the lower and upper triple points as calculated from SCIMITAR3D with 

the computations of [86] and the experiments of [88];  the shock Mach number, Ma = 2.81; the mesh size used is 
Δx=Δy= 0.0025. 
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Figure 25 : Training of the DKG and MBKG methods to create surrogate models of the function given by Equation 

(41). (a) The hypersurface used for training the methods using an 8x8 grid point of training data (N = 64); the 
precise location of the training points are marked by (o). (b) The contour of the hypersurface predicted by the DKG 
method and (c) The contour of the hypersurface predicted by the MBKG method and (d) Convergence of the error, 

𝜺𝜺𝑳𝑳𝟐𝟐, defined by Equation (42) with respect to N. 
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(a) 

 
(b) 

 
(c)  

 
(d) 

Figure 26 : Time evolution of the flow over an array of particles; Ma = 3.5, ϕ ~ 20%, t*=tus/l; where us is the 
shock speed and l is the length of the unit square inscribing the cylinder. A time, 𝒕𝒕∗�  is the time taken by the 

effective lower triple point of the (resultant) shock system to traverse the array of particles. 
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(a) 

 
(b) 

 
(c) 

Figure 27 : (a) Time series evolution of the drag force FD with time t* for Ma =3.5, ϕ = 20% (radius = 0.04) for 
different particles in the particle cloud (b) Time series evolution of the drag force FD with time t* for Ma =3.5, ϕ 

= 20% (radius = 0.04) for the 5 representative particles (particles 13,31,32,35 and 36) in the particle cloud (c) 
The drag, 𝑭𝑭𝑫𝑫����(𝒕𝒕∗) is the mean of FD (t*) of the 5 representative particles (particles 13,31,32,35 and 36) in the 

particle cloud and is compared against FD (t*) corresponding to an isolated cylinder of radius 0.04 impacted by a 
shock of Ma=3.5. 
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(a) 

 
(b) 

 
(c)  

 
(d) 

Figure 28 : Time evolution of the flow over an array of particles; Ma = 3.5, ϕ ~ 1.28% t*=tus/l; where us is 
the shock speed and l is the length of the unit square inscribing the cylinder. 
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(d) 

Figure 29 : Time evolution of the flow over an array of particles; Ma = 1.1, ϕ ~ 20%; t*=tus/l; where us is the 
shock speed and l is the length of the unit square inscribing the cylinder. 
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Figure 30 : Time series evolution of the drag coefficient 𝑪𝑪�𝑫𝑫 with time t* for Case 1 (Ma =3.5, ϕ = 20%.), Case 2 (Ma 

=3.5, ϕ = 1%) and Case 3 (Ma =1.1, ϕ = 20%). 
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Figure 31 : Location of the points of mesoscale computations in the parameter space; these points serve as input data 

to create a surrogate model for 𝑭𝑭�𝑫𝑫 . The drag at points marked as “Initial Sample Points” are first used to create a 
first approximation of a surrogate model for 𝑭𝑭�𝑫𝑫. The points marked as “Sample points for Iteration 2” are as 

calculated from the adaptive sampling algorithm of DKG; mesoscale computations are performed to obtain the drag 
at these locations for constructing the second approximation of a surrogate for 𝑭𝑭�𝑫𝑫. The process is repeated for other 

iterations. To cross-validate the quality of approximation a set of mesoscale computations are performed at the 
points labelled as “Test Points for Computing Error”; the drag from the computations at these points are not used to 
train the metamodeling techniques but are used to compare against the prediction of the surrogate model after each 

iteration to compute the error, 𝜺𝜺𝑳𝑳𝟐𝟐. 
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Figure 32 : Surrogate Model for 𝑪𝑪�𝑫𝑫 constructed using the DKG method using 56 mesoscale computations. The 
location of the inputs is shown in Figure 31. 
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Figure 33 : Surrogate models for 𝑭𝑭�𝑫𝑫 constructed using the DKG method using (a) 9 (b) 24 (c) 40 and (d) 56 
mesoscale computations. 
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Figure 34 : Surrogate Models for 𝑭𝑭�𝑫𝑫 constructed using the MBKG method using (a) 9 (b) 24 (c) 40 mesoscale and 
(d) 56 mesoscale computations. 

 

 
Figure 35 : Variation of 𝐅𝐅�𝐃𝐃 with ϕ for Ma = 2.1 for N mesoscale computations; the surrogate model for  𝐅𝐅�𝐃𝐃 is 

constructed using (a) the DKG method and (b) the MBKG method; (c) convergence of εL2
rel defined by Equation (45)  

with respect to N for the DKG and the MBKG method and (d) convergence of εL2  defined by Equation (46) with 
respect to N for the DKG and the MBKG method. 
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CHAPTER 4.  COMPUTATION OF SUBGRID PARTICLE AVERAGED 

REYNOLDS’ STRESS EQUIVALENCE TERMS IN PARTICLE LADEN FLOW 

 

4.1 INTRODUCTION 

Multiscale modeling of multiphase flows involving fluid-solid interactions occur in many practical 

applications like dusty gases [1–5], fluidized beds [6–9], blood flows [10–13], sediment transport 

[14–16] etc. In such flows, velocity fluctuations arising because of the interaction between the 

solid and the fluid phases play significant roles in gas-particle heat transfer [17–20], mixing of 

species [21–23]  etc. In macro-scale models of such flows, the velocity-fluctuations appear as 

subgrid scale phenomenon and are modeled using Reynolds’ Stress equivalence terms in the 

homogenized/phase-averaged macroscale system of equations [24]. To solve the macroscale 

system of equations, it is necessary to obtain closure laws for the Subgrid Particle Average 

Reynolds’ Stress (SPARSE) terms [24,25]. This paper shows a method of generating closure laws 

for the SPARSE terms from resolved mesoscale computations of shocks interacting with particles. 

The importance of including the effect of velocity fluctuations arising from solid-gas interactions 

in macroscale models of shocked-particle flows has been shown in a recent work [25]. As an 

example, consider an Eulerian-Lagrangian (EL) model [26–31] for macroscale computations of 

shock-particle flows. Traditional EL models such as Cloud in Cell (CIC) methods define a 

computational particle as a collection of several real physical particles. The computational particles 

are modeled as singular point sources in the flow field and their average motion is assumed to be 

under the influence of the drag force exerted by the surrounding gas. Recently [25], the traditional 

CIC method has been improved model by adding the effects of velocity fluctuations in the particle 

and fluid phases within a computational particle. In this improved approach, the instantaneous 

momentum-equation for a computational particle evolves as [25] 

 𝑑𝑑𝑣𝑣𝑖𝑖
𝑝𝑝

𝑑𝑑𝑑𝑑
= 𝑓𝑓(𝑎𝑎�𝑖𝑖)𝑎𝑎�𝑖𝑖 + 𝑑𝑑𝑓𝑓�𝑎𝑎�𝑗𝑗�

𝑑𝑑𝑎𝑎�𝑗𝑗
𝑎𝑎′𝚤𝚤𝑎𝑎′𝚥𝚥�������  (47) 

 

Here 𝑎𝑎𝚤𝚤� = 𝑢𝑢�𝑖𝑖 − 𝑣̅𝑣𝑖𝑖
𝑝𝑝 is the mean slip velocity of the fluid, 𝑢𝑢�𝑖𝑖  and 𝑣̅𝑣𝑖𝑖

𝑝𝑝 are the mean velocities of the 

fluid and the computational particle and 𝑎𝑎𝑖𝑖′ = 𝑢𝑢𝑖𝑖′ − 𝑣𝑣𝑖𝑖
𝑝𝑝′ where 𝑢𝑢𝑖𝑖′ and 𝑣𝑣𝑖𝑖

𝑝𝑝′ are the fluid-phase and 

particle-phase velocity fluctuations. The first-term in the right-hand side of Equation (4) represents 
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the mean momentum-transfer (drag, lift) between the fluid and the particle phases and arises in 

typical CIC models. The stress tensor in the second term, 𝑎𝑎′𝚤𝚤𝑎𝑎′𝚥𝚥�������   is an additional term that is not 

typical of first-order CIC models. This tensor represents the effect of the velocity fluctuations 

resulting from the interaction of the gas and particle phases in the subgrid/meso-scale and arise in 

the macroscale because of Reynolds’ averaging over computational particles (hence the name 

SPARSE). It has been shown that [25] rather than including the drag alone, a macroscale 

formulation that uses both the SPARSE terms and the drag uses lesser number of computational 

particle than typical CIC models to trace a cloud of particles interacting with shocks.  

To close the macroscale system of equations, both the drag/lift forces as well as the SPARSE 

tensor 𝑎𝑎′𝚤𝚤𝑎𝑎′𝚥𝚥������� must be quantified in the parameter range corresponding to shock-particle 

interactions. However, previous research has been limited to generating closure laws for only the 

drag forces exerted on the computational particle by the fluid. In a recent work [24], closure laws 

for the SPARSE terms have been generated using particle resolved direct numerical computations 

for particle laden turbulent flows; however the model is restricted to particles interactions with 

incompressible flows. Closure laws for the SPARSE terms for macroscale models of shock-

particle interactions has received limited attention in the past and remains to be quantified in the 

parameter range corresponding to macroscale flow conditions.  

How does one construct closure laws for the SPARSE terms as a function of the local flow 

conditions? Physical experiments can be used for quantifying the velocity fluctuations; however 

as pointed out in [24], the effect of intrusive instrumentation in experiments alters the flow field 

and non-intrusive experimental measurements are limited by expensive optical access. With 

increasing computational power, resolved mesoscale computations of particles interacting with 

shock are a viable alternative to physical experiments. Velocity fluctuations are explicit to 

mesoscale simulations and do not require closure models to be incorporated in mesoscale 

computations. Therefore, as noted in [32] mesoscale computations of shock-particle interactions 

[4,33,34] offer a promising method to quantify the SPARSE terms as a function of the parameter 

space. 

Mesoscale computations have been used in the past [35–41] to create closure laws in different 

types of multiscale modeling problems. Recently [42–47], the authors used the concept of 

metamodeling/surrogate modeling [48–51]  to construct numerical closure laws for drag on 
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particles interacting with shocks. Because the metamodel in [42] was created from expensive 

numerical computations, particular attention was paid to the selection of a suitable metamodeling 

technique.  Among a variety of methods evaluated [42,52] it was found that a variant of the Kriging 

method [48,53–55], the Modified Bayesian Kriging Method (MBKG) [56,57] constructed accurate 

and smooth surrogates from a minimum number of mesoscale simulations. The MBKG method 

was used to construct surrogates for the drag on particle clusters as a function of Mach Number, 

Ma and the volume-fraction, ϕ. 

Similar to the previous work, the current paper utilizes the MBKG method for creating surrogates 

from mesoscale numerical experiments. However, the present work advances the previous study 

in several different ways. First, the previous work was limited to computation of a surrogate for 

drag alone. Second, the particles in [42] were modeled as rigid and static cylinders. Because in 

most practical applications, particles are not fixed in space, modeling moving particles is a more 

realistic approximation of the problem of shock-particle interaction. The present work does not 

assume static particles, the metamodels in this study are constructed from simulations that allow 

for particle motion. Furthermore, the study is not limited to quantifying the drag alone in the 

parameter space. A more complete closure law to the macroscale equations – one that includes 

drag, lift as well as the SPARSE terms – are constructed in the present paper.  

In the current work, the aforementioned closure laws are created from ensembles of resolved 

mesoscale simulations as a function of Ma and ϕ. The drag and the SPARSE tensor obtained from 

these simulations are homogenized in space and time and are used for generating surrogates for 

spatio-temporally averaged quantities using the MBKG method. In Section 4.2.1 , the governing 

equations and the numerical procedure for solving the equations for the mesoscale model are 

described. In Section 4.2.2 , the Modified Bayesian Kriging is briefly outlined. Section 4.3  

describes the procedure for the computation of the drag, lift and SPARSE terms from the mesoscale 

computations. The effect of Ma and ϕ on these terms are described in Section 4.4.2 , while the 

relevant surrogate models are shown and discussed in Section 4.4.3 .Conclusions and 

recommendations are reserved for the final section.  

4.2 GOVERNING EQUATIONS AND NUMERICAL METHODS 
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4.2.1 Governing Equation and Numerical Method for Mesoscale Computations 

4.2.1. 1 The Governing Equations  

In the mesoscale computations, the gas flow is modeled by the compressible Euler equations:  
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where ρ, ui, p are the density, velocity components and the pressure of the fluid respectively, while 

E = e + 1/2uiui and e are the specific total internal energy and the specific internal energy of the 

fluid. The equations are closed by the ideal gas equation of state given by 

 ( )1−= γρep  (49) 

 

where the specific heat ratio γ = 1.4. A well tested Eulerian code SCIMITAR3D [58–64] is used 

to solve Equations (27) and (28) and is described in the next section.  

4.2.1. 2 Numerical Framework 

The governing equations are spatially discretized on a fixed Cartesian mesh using a 3rd order 

Essentially Non-Oscillatory (ENO) [65] scheme and are marched in time explicitly using a 3rd  

order Runge-Kutta (RK) scheme. The procedure for tracking the interfaces of the solid particles 

and the application of the boundary conditions at the interface is summarized as follows. 

4. To define embedded objects in the flow a narrow-band level-set [66] method is used; this 

allows tracking the object interfaces in a sharp manner. The level set field, 𝜙𝜙𝑙𝑙 at any point 

is the signed normal distance from the 𝑙𝑙𝑡𝑡ℎ immersed object with 𝜙𝜙𝑙𝑙 < 0 inside the 

immersed object and 𝜙𝜙𝑙𝑙 > 0 outside. The interface is implicitly determined by the zero 

level set fields, i.e. 𝜙𝜙𝑙𝑙 = 0 contour represents the 𝑙𝑙𝑡𝑡ℎ immersed boundary. 

5. Once the object interfaces are identified by 𝜙𝜙𝑙𝑙 = 0 contour levels, the no-penetration 

boundary conditions are applied using a variant of the ghost fluid method (GFM) [67].  
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GFM relies on the definition of a band of ghost points corresponding to each phase of the 

interacting materials. The ghost points for the fluid phase are the points lying inside the 

embedded object (defined by 𝜙𝜙𝑙𝑙 > 0) and real points are those which are outside.  

6. Once these ghost points are identified, the next step is to populate the ghost field for the 

fluid. The ghost field is obtained by constructing least-squares interpolation of the field 

variables of real material points and by imposing the appropriate interfacial conditions 

[63] Once the values of the flow variables (e.g. ρ, ui, p and E) at these points are 

populated with the least-squares field, the two-material problem can be converted to two 

single-material problems consisting of real fields and their corresponding ghost fields. 

 

The computational algorithm described in this section is used for performing mesoscale numerical 

experiments to study the interaction of a shock of strength, Ma with a particle cluster of volume 

fraction, ᶲ. The goal of the simulations is to compute a representative mesoscale drag, 𝐹𝐹𝐷𝐷�(𝑀𝑀𝑀𝑀, ᶲ), 

lift 𝐹𝐹𝐿𝐿�(𝑀𝑀𝑀𝑀, ᶲ),  and the SPARSE tensor 〈𝑆̃𝑆〉𝑖𝑖𝑖𝑖   for different values of Ma and ᶲ. Once these are 

computed for several numerical experiments, the next step is to create surrogate models for these 

terms using the MBKG method, which is described in the next section. 

4.2.2 Modified Bayesian Kriging for Construction of Surrogate Models 

The MBKG method [56,57] assumes the inputs come from a stationary Gaussian random process, 

with a mean value of Pλ + Z and variance σ2β, i.e. 

 ( ) ( )IZPλx 2
0 βσ,~~

+MVNf  (50) 

 

where Pλ represents the mean structure, and Z is modeled as a Gaussian random process with zero 

mean and covariance Rxx 2)]()([ σ=qj ZZE . The matrix, R is a spatial correlation of the input 

points, and is defined as follows.  
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where θ is a shape parameter, ( )kqkjk xx −=d , k = 1,2,…,n, n being the dimension of the vector x.  

Commonly used models of the correlation functions are listed in Table 4 [68]. The unknown 

parameters in the MBKG model are λ, σ2, θ and β.  
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Table 4 : Common Correlation Models used in the Kriging Family of Methods 

To determine the unknown parameters, the MBKG method considers a probability distribution 

function over the weight space, representing the relative degrees of belief in different values for 

the model parameters [69]. The function is initially set to a prior distribution and the observations 

i.e., the input data are used to convert the prior distribution to a posterior distribution using Bayes’ 

theorem, which is given by Equation (34).  

 ( ) ( ) ( )ParameterDataParameterDataParameter fff ×∝  (52) 

Here, ( )ParameterDataf  and ( )DataParameterf  are the prior and posterior probability 

distributions respectively and ( )Parameterf  is the likelihood. The mean of the posterior is used to 

obtain a point estimate for the unknown parameter value, while the probability intervals of the 
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posterior is used to define credible sets, which are believed to contain the true parameter value 

with a specified probability. 

Priors may be chosen such that they are conjugate priors wherever possible, i.e., the prior 

distribution may be from a parametric family that takes on the same functional form as the 

likelihood function. In cases where a conjugate prior does not exist for a given problem, any 

distribution that reflects the prior knowledge about the unknown parameters may be used as priors. 

In such cases, Bayes’ rule is applied using the Markov Chain Monte Carlo (MCMC) to draw 

samples from high-dimensional and non-standard probability distributions.  

For the three unknown model parameters, λ, σ2 and β, semi-conjugate prior distributions are used 

to fit the MBKG surrogate model. For the parameter λ, the conjugate prior is a multivariate normal 

distribution and is expressed as  

 ( )λλ Σμλ ,~ MVN  (53) 

 

where μλ and Σλ are the prior mean vector and the covariance matrix for the distribution. Similarly, 

the conjugate prior distribution for σ2 and θ are Inverse-Gamma distributions expressed as  

 ( )σσ βασ ,Gamma Inverse~2  (54) 

 ( )ββ βαβ , Gamma Inverse ~  (55) 

where ασ, βσ, αβ, ββ are the prior parameters of the respective distributions. The parameters θ are 

embedded in the correlation matrix, R, and there is no known conjugate distribution type that may 

be used as prior distributions. The prior distribution for θ is chosen to be a uniform distribution 

and is expressed as  

 ( )
jj

baj θθθ ,U~  (56) 

where θj is the jth correlation function parameter and aθj and bθj are the prior parameters for θj. 

Using Equations (35) through (38), the joint posterior distribution for the MBKG formulation 

given in Equation (34) may be expressed as  
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The full conditionals for each of the model parameters, shown in [56], may be used to estimate the 

values of the model parameter for each MCMC sample. Because the MBKG method is evaluated 

using posterior distributions, the MBKG surrogate model is not a deterministic surrogate model 

but rather a surrogate that produces posterior distributions for the MBKG parameters. Therefore, 

a predicted response value does not have one deterministic value but rather has a distribution that 

gives the probability of the predicted response value being in any interval. The MCMC samples 

drawn from the predictive distribution of the response variable may be used to estimate any desired 

characteristics of the distribution, e.g., the mean, standard deviation and credible sets. The larger 

the standard deviation and the wider the credible sets, the more uncertainty there is in the predicted 

value. The credible sets come closer to the mean value with larger number of samples, i.e. the 

uncertainty in the true parameter value reduce remarkably with increasing values of N, the number 

of samples. Unless otherwise mentioned, in the current work, the term MBKG hypersurface/ 

MBKG surrogate model is used to denote the mean response of the probability distribution of the 

predictions.  

4.3 METHODS FOR CONSTRUCTING SURROGATE MODELS FOR DRAG AND 

SPARSE TERMS FROM MESOSCALE EXPERIMENTS 

To construct surrogate models for the drag, lift and the SPARSE terms, resolved mesoscale 

computations of particles interacting with shocks are performed. The results from these 

experiments are used for training the MBKG method to obtain the required metamodels. The 

details of the procedure for creating surrogates is explained as follows. 

4.3.1 Set up for the Mesoscale Numerical Experiments 

The mesoscale computational model consists of the gas phase and the particle phase. The particles 

are modeled as rigid moving cylinders immersed in a flow at various Mach numbers. For 

sufficiently high fluid velocities and small particles the viscous time scales are larger than the 
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shock propagation time scales and drag on the particles is dominated by pressure forces. Therefore, 

the Euler equations are solved in the fluid phase. The mesoscale computational domain is 

illustrated in Figure 36. The setup consists of an array of n particles of radius r= 0.01 units, 

immersed in a uniform flow with (u,ρ,p) = (0.0,1.0,1.0). The particles are arranged in a square of 

1.0×1.0 units and the local particle volume fraction ϕ is given by 

 

 2rnπφ =  (58) 

 

To vary the particle volume fraction, the number of particles, n is varied to achieve a target volume 

fraction. The simulation is initiated with an imposed shock of Mach number, Ma, located some 

distance upstream of the particles. The initial thermo-mechanical properties of the shocked gas 

(air) are computed from the Rankine-Hugoniot jump conditions. Slip boundary conditions are 

specified at the top and bottom surfaces of the computational domain while inflow and outflow 

boundary conditions are maintained at the left and right of the domain respectively.  

In the mesoscale computations, the dimensions of the square in which the particle cluster is 

arranged is selected as the reference length scale, lref  and is set to lref = 1.0. Corresponding to lref, 

a reference time scale, tref is defined as tref = lref / us , such that an incident shock of speed us traverses 

the particle cluster in tref =1 unit of time. Throughout the paper, the drag forces on particles and 

other transient quantities are presented as a function of a scaled time t* which is defined as the 

ratio of the non-dimensional time t (in Equation ) to the reference time tref, i.e. t* = t/ tref. Since the 

shock traverses the particle cluster in time of order tref =1 using the scaled time t* allows for 

comparison of the dynamics across the range of parameters (ϕ, Ma). 

4.3.2 Computation of the Drag and the SPARSE terms in an RVE from mesoscale numerical 

experiments 

Each mesoscale computation at the 56 locations in the parameter space resolves the flow around 

the n cylinders shown in Figure 36. The drag is different for each of the cylinders in the 

computational domain; but drag correlations that are useful for macroscale computations require 

a unique value of drag for a given value of Ma and ᶲ.  In the present work, a spatially-averaged 
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drag, 𝐹𝐹𝐷𝐷���(𝑡𝑡∗;𝑀𝑀𝑀𝑀, ᶲ) is defined as the average drag over all the n cylinders in the mesoscale 

experiment. The spatially-averaged drag, 𝐹𝐹𝐷𝐷���(𝑡𝑡∗;𝑀𝑀𝑀𝑀, ᶲ), is still a function of time; 𝐹𝐹𝐷𝐷���(𝑡𝑡∗;𝑀𝑀𝑀𝑀, ᶲ) 

is averaged over a mesoscale time, 𝑡𝑡∗�  as follows:  
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where 〈𝐹𝐹𝐷𝐷���〉(𝑀𝑀𝑀𝑀,𝜙𝜙) denotes the drag averaged over both space and time.  

One key issue in obtaining the time-averaged drag is the selection of the time sample, i.e. the value 

of 𝑡𝑡∗� . Selection of an appropriate 𝑡𝑡∗�  depends on the flow regime that is of interest to the work. 

When particles interact with shock, there are two identifiable flow durations. In the initial part, 

when the shock interacts with particles, the gas in the cluster is gradually accelerated from rest. In 

this part of the flow, the motion of the particles is negligibly small and the entire dynamics is 

dominated by that of the incoming and reflected shocks. Once the shock leaves the particle cluster, 

the particles are accelerated and start following the shock. In the present work, only the initial part 

of the shock dynamics is modeled. Under this assumption, 𝑎𝑎′𝚤𝚤𝑎𝑎′𝚥𝚥������� =  𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥�������   where u = ui is the 

velocity of the gas in the particle cluster. Therefore, following the convention of our previous work 

[42],  𝑡𝑡∗�  is selected to be the time when the entire incident shock system leaves the particle cluster. 

Therefore, a spatio-temporally averaged drag on a representative particle 〈𝐹𝐹𝐷𝐷���〉(𝑀𝑀𝑀𝑀,𝜙𝜙)is obtained 

for different values of Ma and ϕ.  The drag-coefficient, 〈𝐶𝐶𝐷𝐷����〉(𝑀𝑀𝑀𝑀,𝜙𝜙) , is computed by normalizing 

the drag force, 〈𝐹𝐹𝐷𝐷���〉(𝑀𝑀𝑀𝑀,𝜙𝜙) with the product of the density of the unshocked fluid,ρ, the square of 

the shock-velocity, 𝑢𝑢𝑠𝑠2, and a diameter, Deq as follows 

 〈𝐶𝐶𝐷𝐷����〉(𝑀𝑀𝑀𝑀,𝜙𝜙) =
〈𝐹𝐹𝐷𝐷���〉(𝑀𝑀𝑀𝑀,𝜙𝜙)

1
2𝜌𝜌𝑢𝑢𝑠𝑠

2𝐷𝐷𝑒𝑒𝑒𝑒
 (60) 
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where 
100

4 φ
π

××= ADeq  is the equivalent diameter of the particle cluster and A is the total area 

of the unit-square inscribing the particle-cluster. 

The SPARSE term is defined by the stress tensor, Sij, computed as follows. 

 𝑆𝑆𝑖𝑖𝑖𝑖(𝐱𝐱, 𝑡𝑡) =  
𝑢𝑢𝑖𝑖′(𝐱𝐱, 𝑡𝑡)𝑢𝑢𝑗𝑗′(𝐱𝐱, 𝑡𝑡)

𝜌𝜌𝑢𝑢𝑠𝑠2
 (61) 

Here, 𝑢𝑢𝑖𝑖′(𝑡𝑡) is the fluctuating component of the velocity field 𝑢𝑢𝑖𝑖 of the fluid in the RVE and is 

defined as follows 

 𝑢𝑢𝑖𝑖′(𝐱𝐱, 𝑡𝑡) = 𝑢𝑢𝑖𝑖(𝐱𝐱, 𝑡𝑡) − 𝑢𝑢𝚤𝚤� (𝑡𝑡)  (62) 

where 𝑢𝑢𝚤𝚤� (𝑡𝑡) is the Favre-average of the velocity 𝑢𝑢𝑖𝑖 of the fluid in the RVE. The SPARSE terms in 

Equation (61) are a function of space,x and time, t. Similar to the drag, because macroscale closure 

laws require the SPARSE tensor to be a scalar-valued function of the parameter space, it is 

necessary to perform a spatio-temporal average of the terms in Equation (61). A spatial 

homogenization is performed by performing a Favre-average of the terms in Equation (61)  over 

the entire RVE. The Favre-averaged SPARSE tensor, 𝑆̃𝑆𝑖𝑖𝑖𝑖(𝑡𝑡), is still a function of time;  a temporal 

average of the tensor is performed over time to obtain the spatio-temporally averaged SPARSE 

tensor, 〈𝑆̃𝑆〉𝑖𝑖𝑖𝑖  as follows 
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The spatio-temporally averaged drag and the terms of SPARSE tensor, computed using Equations 

(60) and (4), are scalar valued functions depending only the values of (Ma,ϕ). Therefore, closure 

laws for these terms can be used in macroscale systems of equations. To construct surrogate models 

for these, it is necessary to compute these terms for different values of  (Ma,ϕ). 
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4.3.3 Selection of Inputs Points in the Parameter Space 

Because mesoscale computations are expensive, numerical experiments can only be performed at 

selected values (Ma, ϕ) in the parameter space. In general in Kriging methods, to construct an 

initial surrogate model, a set of initial inputs are required. The subsequent input points for further 

computations are typically chosen by the user based on the regions of interest in the parameter 

space. Examples of sampling strategies include choosing samples at regular intervals, Latin 

Hypercube techniques [70], Latin Centroidal Voronoi Tessellation (LCVT) methods [71], etc. A 

majority of the sampling techniques are unsupervised in nature, i.e. the locations of the subsequent 

input points in the parameter space are independent of the regions of complexity of the 

hypersurface to be approximated. Because the MBKG method gives a measure of the uncertainty 

associated with the fit, it is possible to use the credible sets to identify regions in the parameter 

space where the error in approximation is higher. This can be used to select locations for 

subsequent inputs in constructing surrogate models.  The locations for performing mesoscale 

simulations in the parameter space are systematically selected in the following way: 

1.  First, the limits for the parameter space are specified. Numerical experiments are 

designed to be conducted for 1.1<Ma<3.5 and 1.28%<ϕ<10%. To start with N = N1 

numerical experiments are conducted at uniformly spaced locations in the parameter space 

to obtain 〈𝐶𝐶𝐷𝐷����〉(𝑀𝑀𝑀𝑀,𝜙𝜙)values. An initial surrogate model for 〈𝐶𝐶𝐷𝐷����〉 is constructed using the 

MBKG methods.  

2. The value of credible sets obtained from fitting the model is computed at 100x100 

locations, uniformly distributed in the parameter space. A new set of N2 candidate locations 

with the highest values of the credible sets in the parameter space are selected for 

performing the next set of numerical experiments. An improved surrogate model is then 

constructed based on the new values of 〈𝐶𝐶𝐷𝐷����〉  at all the N = N1+N2 locations.  

3. This process is continued to a desired number of times k, each time adding Nk new points 

until a surrogate model of acceptable accuracy is constructed. Note that the number of 

points Nk is not fixed a priori and the user is free to choose the number of new mesoscale 

simulations based on the computational resources available.  
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Surrogate models are constructed for Nk = 13, 29, 45 and 61 mesoscale computations for k = 1,2,3 

and 4 respectively. The location of the mesoscale computations at each step k are shown in Figure 

37, while the surrogate models are shown in the next section. 

4.4 RESULTS AND DISCUSSIONS 

The construction of surrogate models from numerical experiments relies of the accuracy of the 

mesoscale solver and results from the  mesoscale code is compared with the results with the work 

of previous research [86, 88]. Following this, numerical experiments are performed to compute 

the drag and the SPARSE terms for different values of Ma and ϕ. The effect of Ma and ϕ on  〈𝐶𝐶𝐷𝐷����〉  

and 〈𝑆̃𝑆〉𝑖𝑖𝑖𝑖 is shown in Section Error! Reference source not found.. Finally, surrogate models for 

〈𝐶𝐶𝐷𝐷����〉 and 〈𝑆̃𝑆〉𝑖𝑖𝑖𝑖 are presented in Section 4.4.3 . 

4.4.1 Validation of the Computational Code: Interaction of a Shock with a Single Cylinder  

To validate the calculations of SCIMITAR3D [58–64] in the present context the interaction of a 

shock with a single cylinder is studied. The diameter of the cylinder is selected to be 0.1 non-

dimensional units and the center of the cylinder is placed at (1.1,1.0) inside a domain of size 3.0 x 

1.0. A planar shock of Ma = 2.6 is initially placed at 𝑥𝑥1 = 1.0. Slip boundary conditions are 

enforced at the top and bottom faces, while inflow and outflow conditions are maintained at the 

west and east faces of the domain respectively. The study is conducted for different mesh sizes of 

∆x= ∆y= 0.004, 0.0025, 0.001, 0.0009 and 0.00075. 

The drag on a cylinder is compared with the calculations of [72]. Figure 23 shows that the peak 

drag coefficient agrees well with the benchmark [72]. The initial part of the drag corresponds to 

the pressure forces on the particle resulting from the passage of the shock and is in good agreement. 

The disagreement in the decreasing part of the drag curve is because the present calculations are 

inviscid while [72] used the Navier-Stokes equations. To further validate the computational model, 

the case of a shock of Ma=2.81 interacting with a cylinder is studied. The locus of the upper and 

lower triple-points of the shock-system created after the onset of Mach reflections are compared 

with  experimental observations of [73] and  calculations of [72]. Figure 24 shows that the current 

calculations are in excellent agreement with the experimental observations as well as the 

calculations of [72]. While more extensive validation of the code SCIMITAR3D is shown in [58–
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64], the two problems chosen in this section validate the computations in the context of shock 

interactions with particles. 

To construct surrogate models for the drag, lift and the SPARSE terms, numerical experiments of 

particles interacting with a shock is performed for different values of ϕ and Ma following the 

procedure described in Section 4.3 . Before presenting and analyzing the surrogates, it is instructive 

to observe how the local shock features in the flow field and the drag, lift and the SPARSE terms 

differ for different values of ϕ or Ma. 

4.4.2 The Effect of ϕ and Ma on Local Flow Features and the SPARSE Terms for Shocks 

Interacting with Particles 

4.4.2. 1 Effect of ϕ on Local Flow Features and the Closure Terms 

To study the influence of ϕ on the flow field and the closure terms, three different cases 

corresponding to particle volume fractions of ϕ = 1%, ϕ = 5% and ϕ = 10% are studied. In all of 

these cases, the shock strength is set to a constant value of Ma  = 3.5. While the local shock 

dynamics differ considerably from each other on changing the volume fraction (Figure 40), in the 

present work, features that are relevant to understanding the parametric dependence of the closure 

terms on ϕ are highlighted. 

 

Effect of ϕ on local shock dynamics 

For the same Mach Number, the shocks reflected from individual cylinders interact differently 

with each other for different volume fractions (Figure 40). For ϕ = 1%, the shocks reflected from 

individual particles do not interact with each other in the initial stages of flow (Figure 40a). At t* 

= 0.74, the shock that is reflected from the overall particle cluster comprises individual bow shocks 

of each particle. It is only at later times (t* = 1.82), when the two-dimensional effects of the particle 

cluster appear – the individual bow shocks from particles merge with those located north/south of 

the particles and  the overall reflected shock front becomes normal to the direction of shock 

propagation (Figure 40a). For higher volume fractions (ϕ = 5% and ϕ = 10%), because of closer 

proximity of the particles in the cluster, the shocks reflected from individual cylinders merge with 

each other at an earlier time  (Figure 40b-c). At t* = 0.74, the overall reflected shock front is normal 

to the direction of the flow for y = 0.5 to y = 1.5 and becomes circular around the edges of the 

particle cluster. As the flow evolves with time (e.g. at t* = 1.82), the reflected shock recedes further 
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for higher volume fraction (i.e. ϕ = 5% and ϕ = 10% in Figure 40b-c) compared to ϕ = 1% and 

curvature of the reflected shock front is larger than that of ϕ = 1%. In fact, between ϕ = 5% and ϕ 

= 10%, the curvature of the reflected shock front is higher for ϕ = 10%. Curvature of a shock front 

indicates bending of the streamlines of flow; by comparing the reflected shock fronts for the three 

cases in Figure 40, the two-dimensional nature of the flow is seen to increase with increasing 

volume fraction. 

 

The two-dimensional nature of the flow of higher volume fractions can also be seen by observing 

the curvature of the incident shock front for the three cases in Figure 40. For lower volume 

fractions (ϕ = 1%), the incident shock travels nearly unobstructed through the flow and the incident 

shock front is nearly normal to the direction of shock propagation (Figure 40a). The incident shock 

front is more obstructed for ϕ = 10%, compared to ϕ = 5% (Figure 40b and 2c); similar to the 

reflected front, the incident shock front is observed to be have higher curvature for higher volume 

fractions (Figure 40).   

 

A larger obstruction to the mean flow results in higher transverse flow for increasing volume 

fractions. This can be seen by observing the barotropic vortices that are generated in the wake of 

the particles for different volume fractions (Figure 40). The size of the vortices depend on the 

diameter of the particles, which is same for all the three cases shown in Figure 40. However, for 

low volume fractions (ϕ = 1%), particles are located farther away from each other than for higher 

volume fractions (ϕ = 10%). Because of this, the vortices in the wake of particles for ϕ = 1% are 

shed in the direction of propagation of the incident shock (Figure 40a). For higher volume 

fractions, the vortices from individual particles interact with each other – the interaction is highest 

for ϕ = 10% followed by ϕ = 5% (Figure 40b-c). The vortices are diverted transverse to the 

direction of propagation of the incident shock; the transversely directed vortices are marked as TV 

in Figure 40b-c.  

 

An observation that is of interest in the present study is that in Figure 40, after the incident shock 

leaves the particle cluster completely, shocks from adjacent particles continue to reflect internally 

for higher volume fractions  (ϕ = 5% and 10%). This sustains a fluctuating transient flow pattern 

in the particle cluster in Figure 40b and c for higher volume fractions. Because the particles are 
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located further away from each other in ϕ = 1%, internal reflections of the shocks from adjoining 

particles are lesser compared to higher volume fractions. 

 

To summarize the observations, it is seen in Figure 40 that the two-dimensional effect of particle 

clusters is higher for higher volume fractions – this results in directing the mean flow transversely. 

Because of higher internal reflections of shocks from particles within a cluster, a fluctuating 

transient flow is maintained for higher volume fractions after the incident shock leaves the cluster 

completely. In light of these two observations, the variation of the drag, lift and SPARSE terms 

with volume fraction can be analyzed for the three cases of a shock interacting with  ϕ = 1%, 5% 

and 10%.     

Effect of ϕ on the lift, drag and the SPARSE terms 

In order to quantify the effect of volume fractions on the drag, lift and SPARSE terms, the 

evolution of 𝐶𝐶𝐷𝐷����, 𝐶𝐶𝐿𝐿���, 𝑆̃𝑆𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑇𝑇𝑇𝑇������ with time is studied and is shown in Figure 41. The drag, 𝐶𝐶𝐷𝐷���� is 

observed to be decreasing with increasing volume fraction (Figure 41a). This is because for 

increasing volume fractions, shocks reflected from neighboring particles interfere constructive and 

destructively with each other; the overall incident shock is weakened as it faces more obstruction 

to the flow and results in lower drag for higher volume fraction. The overall lift, 𝐶𝐶𝐿𝐿��� is negligibly 

small (~ 1-2% of the incident shock momentum) for the particle clusters (Figure 41b); this is 

attributed to the overall symmetry of the particle clusters with respect to the mean flow.  

 

The SPARSE terms are seen to be influenced by the volume fraction of the particle cluster. The 

𝑆̃𝑆11  terms are observed to decrease and the 𝑆̃𝑆22  terms increase with increasing volume fractions 

(Figure 41c-d). This is because of the bending of the streamlines and the increasing transverse flow 

for higher volume fractions. The cross-correlation term, 𝑆̃𝑆12   component of the SPARSE tensor is 

negligibly small and is less than 0.2% of the kinetic energy of the incident shock (Figure 41e). 

This implies that the directions parallel and normal to the direction of shock propagation are the 

principal directions of the SPARSE tensor.  

 

It is interesting to note that the 𝑇𝑇𝑇𝑇𝑇𝑇������ term varies within a few percentages of each other for differing 

volume fractions – especially for early regimes of the flow (Figure 41f). In this time frame, 𝑆̃𝑆11  is 

inversely related to volume fraction while 𝑆̃𝑆22  increases with increasing volume fraction. The 



www.manaraa.com

106  
 

decrease of 𝑆̃𝑆11 with volume fraction is almost compensated by the increase of 𝑆̃𝑆22 keeping the 

𝑇𝑇𝑇𝑇𝑇𝑇������ nearly constant with volume fraction. In the later potions of the flow, the 𝑇𝑇𝑇𝑇𝑇𝑇������ decreases 

rapidly for low volume fractions compared to higher volume fractions (Figure 41f). This is because 

of higher internal reflections of shocks within the particle cluster after the incident shock has 

passed by, which sustains the local shock dynamics within the particle cluster. 

 

In conclusion, it is observed that the 𝑇𝑇𝑇𝑇𝑇𝑇������ terms are of the order of 15% of the kinetic energy of 

the shock (Figure 41f)  - at least for high Mach Number flows, such as Ma = 3.5 as presented in 

this section. The variation of the closure terms with Ma is analyzed in the following section. 

 

4.4.2. 2 Effect of Ma on Local Flow Features and the Closure Terms 

To study the effect of Ma on the closure terms, the cases of shocks of Ma = 1.1, 2.3 and 3.5 

interacting with particle clusters are studied. The volume fraction, ϕ of the clusters are kept 

constant and is set to 10%. Similar to the previous section, to understand the variation of the closure 

terms with Ma, first the flow field in the particle clusters are qualitatively studied. This is then 

followed by quantifying the variation of the spatially homogenized closure terms -𝐶𝐶𝐷𝐷����, 𝐶𝐶𝐿𝐿���, 𝑆̃𝑆𝑖𝑖𝑖𝑖 and 

𝑇𝑇𝑇𝑇𝑇𝑇������ with time for different Mach Numbers. 

 

Effect of Ma on local shock dynamics 

The effect of varying Ma of the shock interacting a particle cluster of ϕ = 10% on the mesoscale 

flow features can be observed in Figure 42. For weaker shocks, the flow behind the shock is slower. 

In particular, for Ma = 1.1, the flow behind the shock is subsonic -unlike for Ma = 2.3 and 3.5, 

where the flow behind the shock is supersonic. The shocks reflected from the particle cluster 

recedes faster for Ma = 1.1 than for Ma = 2.3 and 3.5 (Figure 42a, b and c). Similar to the cases 

shown in the previous section, the front of the reflected shock is observed to be normal to the 

direction of the propagation of the incident shock from y = 0.5 to y = 1.5, while the front bends 

around the edges of the particle cluster for Ma = 2.3 and 3.5 (Figure 42b and c). The curvature of 

the reflected shock is seen to be highest for Ma = 3.5 and lowest for Ma = 1.1 (Figure 42a,b and 

c). Similar to the reflected shock front, the incident shock front also bends as it traverses through 

the particle cluster. The curvature of the incident shock front is seen to highest for Ma = 3.5 and 
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negligibly small for Ma = 1.1 (Figure 42a,b and c). The cases of Ma = 2.3 and Ma = 3.5 are also 

characterized by baroclinic vortices in the wakes of individual particles; in both these cases the 

vortices are directed transversely by the particle cluster (Figure 42b and c). These two cases are 

also characterized by unsteady vortical structures within the particle cluster (Figure 42b and c). In 

particular, the case of a stronger shock (Ma =3.5) is characterized by more complex unsteady 

vortical patterns within the particle cluster compared to Ma = 2.3 (Figure 42b and c). In conclusion, 

a higher Ma results in bending the incident and the reflected shock front and the flow field is 

characterized by more unsteady shock interactions for a given volume fraction.  

 

Effect of Ma on the lift, drag and the SPARSE terms 

The variation of the closure terms 𝐶𝐶𝐷𝐷����, 𝐶𝐶𝐿𝐿���, 𝑆̃𝑆𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑇𝑇𝑇𝑇������ with time for different Ma is shown in 

Figure 43. Because for higher Ma, there is a larger jump in the pressure, density and other 

thermomechanical properties of the gas, the drag coefficient 𝐶𝐶𝐷𝐷���� increases with increasing Ma 

(Figure 43a). Similar to the cases presented in the previous section, the lift, 𝐶𝐶𝐿𝐿��� is negligibly small 

(Figure 43b); this is because of the overall symmetry of the particle cluster. 

 

The two principal terms of the SPARSE tensor - 𝑆̃𝑆11 and 𝑆̃𝑆22 as well as the kinetic energy ratio, 

𝑇𝑇𝑇𝑇𝑇𝑇������ (Figure 43c,d and f) increases with increasing Ma. This is because a stronger shock results 

in more complex unsteady shock interactions within the particle cluster, which leads to higher 

values of velocity fluctuations in an RVE. Similar to the results shown in the previous section, the 

𝑆̃𝑆12 term in the SPARSE tensor is negligibly small and is less than 0.5 % of the kinetic energy of 

the incoming flow. 

 

It is noteworthy that in Figure 41f and Figure 43f, the kinetic energy ratio,  𝑇𝑇𝑇𝑇𝑇𝑇������ is negligibly small 

for low Ma flows. However, as the shock strength increases, the kinetic energy of the fluctuations 

is seen to be significant and is of the order of 12-15% for high Ma flows. This implies that at least 

for certain classes of problems of shock interaction with particles, it is necessary to model the 

SPARSE terms as a function of the parameter space. The surrogate models for the SPARSE tensor 

is shown in the next section.   
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4.4.3 Surrogate Models for SPARSE terms 

In the previous section, local flow features of representative mesoscale computations were 

analyzed to study the variation of the homogenized lift and drag coefficients as well as the 

SPARSE terms with Ma and ϕ. While in the previous section, the analysis was limited to the time 

evolution of the spatially homogenized closure terms for selected value of Ma and ϕ, in this section 

the variation of the spatio-temporally homogenized quantities in the parameter space is analyzed. 

Surrogate models for the closure terms - 〈𝐶𝐶𝐷𝐷����〉, 〈𝐶𝐶𝐿𝐿���〉, 〈𝑆𝑆̅〉𝑖𝑖𝑖𝑖,  and 〈𝑇𝑇𝑇𝑇𝑇𝑇������〉 - are constructed from 61 

mesoscale computations, following the procedure described in Section 4.4.3 .  The hypersurfaces 

of the surrogates are shown in Figure 44.  

Similar to 𝐶𝐶𝐷𝐷����, the spatio-temporally homogenized drag coefficient 〈𝐶𝐶𝐷𝐷����〉 increases with increasing 

Ma (Figure 44a); this is because of stronger discontinuities across shocks of higher Ma. 

Furthermore, 〈𝐶𝐶𝐷𝐷����〉  is also observed to be lower for higher volume fractions (Figure 44a). This is 

because, as shown in Section 4.4.2. 1 , a denser particle cluster attenuates the incoming shock [74]. 

Similar to the results shown in Section Error! Reference source not found., the spatio-temporally 

averaged lift coefficient, 〈𝐶𝐶𝐿𝐿���〉 is observed to be negligibly small throughout the parameter space 

(Figure 44b). 

The 〈𝑆𝑆̅〉11 , 〈𝑆𝑆̅〉22 components of the SPARSE tensor as well as the 〈𝑇𝑇𝑇𝑇𝑇𝑇������〉  are small for lower 

values of Ma (Figure 44c-d and f) and increase linearly from Ma = 1.1 to Ma ~ 2.0. As the shock 

strength increases beyond Ma  ~ 2.0, the terms nearly saturate for a given volume fraction and do 

not increase sharply with increasing shock velocity. In other words, for a given value of ϕ, the 

slopes of 〈𝑆𝑆̅〉11and 〈𝑆𝑆̅〉22 as well as 〈𝑇𝑇𝑇𝑇𝑇𝑇������〉 with respect to Ma is higher when Ma < 2.0 than when 

Ma >2.0. A possible explanation for this is the flow behind the shock transitions from subsonic to 

supersonic at Ma = 2.067 (for γ = 1.4).  As is typical for pressure, density and other thermodynamic 

fluid properties, the velocity fluctuations in an RVE is also observed to be more sensitive to the 

shock speed when the flow behind the shock is subsonic as opposed to supersonic.  

For a given Ma, 〈𝑆𝑆̅〉11 is higher for lower volume fractions compared to higher volume fractions 

(Figure 44c). The variation of  〈𝑆𝑆̅〉22 is exactly opposite; 〈𝑆𝑆̅〉11 is higher for higher volume fractions 

compared to lower volume fractions (Figure 44d). This is because a higher particle fraction turns 

the flow transversely (as shown in Section 4.4.2. 1 ) thereby the velocity fluctuations from the 
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direction of shock propagation to the transverse direction. It is interesting to note that on increasing 

ϕ, the decrease in 〈𝑆𝑆̅〉11 is almost compensated by the increase in 〈𝑆𝑆̅〉22. This is observed by noting 

that the 〈𝑇𝑇𝑇𝑇𝑇𝑇������〉 varies negligibly with ϕ  (Figure 44f). The total kinetic energy of the fluctuations 

is conserved along the ϕ and is predominantly a function of Ma.   

From Figure 44f, it is also noted that the kinetic energy of the fluctuations is about 5-8% of the 

kinetic energy of the incoming shock for Ma > 2.0. Finally, it is noted that 〈𝑆𝑆̅〉12 is negligibly small 

(Figure 44e) – the direction of shock propagation and the one transverse to it comprise the principal 

directions of the SPARSE tensor.  

4.5 CONCLUSIONS 

This paper quantifies the Subgrid Particle Average Reynolds’ Stress (SPARSE) terms which arise 

as unclosed terms in homogenized Eulerian Lagrangian macroscale models of shock-particle 

interactions. The closure laws or surrogate (meta-) models are derived from resolved mesoscale 

computations of particles (modeled as a cluster of cylinders) of volume fraction ϕ interacting with 

a shock of strength, Ma. The SCIMITAR3D code is used to perform numerical experiments for 

various values of Ma and volume fraction, ϕ. The drag, lift and SPARSE terms computed from 

mesoscale simulations are averaged over space (using a suitable RVE) and time (using a 

characteristic mesoscale time scale) and are calculated for each combination of Ma and ϕ. These 

are then used to construct surrogate model for the drag and lift coefficients, SPARSE terms and 

the kinetic energy of the velocity fluctuations using a Modified Bayesian Kriging Method. 

It is found that the kinetic energy of the velocity fluctuations is approximately 8% for higher Mach 

number flows (Ma > 2.0). The kinetic energy, SPARSE terms and the drag coefficients are also 

seen to asymptotically increase for Ma > 2.0. In particular, the kinetic energy is predominantly a 

function of Ma and is conserved along the ϕ axis of the parameter space. As the volume fraction 

increases, the mean flow is transversely directed in such a way that the kinetic energy of the 

fluctuations is kept constant.  

In ongoing and future work several extensions of the work presented here are being pursued. First, 

the effect of viscous dissipation on the SPARSE terms and kinetic energy of the velocity 

fluctuations is being pursued. Second, the present work initiates the quantification of the closures 

at the initial flow regimes of shock particle interaction. Once the shock has passed, the particles 
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are accelerated in the flow; the effect of the interaction of particle-velocity fluctuations with the 

fluid velocity fluctuations is being pursued. Finally, three-dimensional particle calculations at the 

meso-scale are being pursued to obtain more comprehensive closure models. 
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Figure 36 : Computational geometry for mesoscale calculations of interaction of a shock with a cluster of 

particles. The Mach Number of the shock is Ma. To the right of the shock is a static fluid (γ = 1.4), with unit 
density and pressure. The properties of the fluid to the left of the shock is governed by the Rankine-Hugonoit 

jump conditions for an ideal gas. The cluster of particles is modelled by an array of n cylinders, each of diameter 
d. The volume fraction of the particle cluster is given by ϕ = 𝑛𝑛𝑛𝑛𝑑𝑑2/4. 

 

Shock of Mach Number, Ma 

 n Particles of Diameter, d 

Compressed Gas 
[ρ,u,p] = 

[ρsh,ush,psh] 
 

 

Static Gas 
[ρ,u,p] = 
[1,0,1] 
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Figure 37 : Location of the points of numerical experiments in the parameter space. The input points are 
selected sequentially using the MBKG sampling technique described in Section 4.3.3 . The N1 points are the 

initial locations of simulations, the points marked by N2 are the locations of the next set of numerical 
experiments, followed by N3  and so on. 
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Figure 38 : Comparison of the coefficient of drag force, CD , on a cylinder as obtained from SCIMITAR3D with the 

computations of [72]; the shock Mach Number, Ma is 2.6. 

 
Figure 39 : Comparison of the trajectory of the lower and upper triple points as calculated from SCIMITAR3D with 

the computations of [72] and the experiments of [73];  the shock Mach number, Ma = 2.81; the mesh size used is 
Δx=Δy= 0.0025. 
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Figure 40 : Numerical Schlieren images of the interaction of a shock of Mach Number Ma with a cluster of particles of 
volume fraction ϕ at 𝑡𝑡∗ = 0.74 and 𝑡𝑡∗ = 1.82.(a) [Ma, ϕ] = [3.5,0.01], (b) [Ma, ϕ] = [3.5,0.05], and  (c) [Ma, ϕ] = 

[3.5,0.1]. 
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t* = 0.74 t* = 1.82 
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Figure 41 : The variation of the closure terms, viz (a) 𝐶𝐶𝐷𝐷(𝑡𝑡∗) (b) 𝐶𝐶𝐿𝐿(𝑡𝑡∗)  (c) 𝑢𝑢′𝑢𝑢′� (𝑡𝑡∗)(d 𝑣𝑣′𝑣𝑣′� (𝑡𝑡∗), (e) 𝑢𝑢′𝑣𝑣′� (𝑡𝑡∗) and (f) 
𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡∗) with time. for a shock of Mach Number, Ma = 3.5 interacting with particles clusters of  ϕ = 1%, 5% and 

10%. 
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Figure 42 : Numerical Schlieren images of the interaction of a shock of Mach Number Ma with a cluster of 
particles of volume fraction ϕ at 𝑡𝑡∗ = 0.74 and 𝑡𝑡∗ = 1.82.(a) [Ma, ϕ] = [1.1,0.1], (b) [Ma, ϕ] = [2.3,0.1] and 
(c) [Ma, ϕ] = [3.5,0.1]. 
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Figure 43 : The variation of the closure terms, viz (a) 𝐶𝐶𝐷𝐷(𝑡𝑡∗) (b) 𝐶𝐶𝐿𝐿(𝑡𝑡∗)  (c) 𝑢𝑢′𝑢𝑢′� (𝑡𝑡∗)(d 𝑣𝑣′𝑣𝑣′� (𝑡𝑡∗), (e) 𝑢𝑢′𝑣𝑣′� (𝑡𝑡∗) and (f) 
𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡∗) with time. for a shock of Mach Number, Ma = 3.5 interacting with particles clusters of  ϕ = 1%, 5% and 
10%. 
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Figure 44 : Surface plots of the variation of the closure terms, viz (a) 𝐶𝐶𝐷𝐷�(𝑀𝑀𝑀𝑀,𝜙𝜙) (b) 𝐶𝐶𝐿𝐿�(𝑀𝑀𝑀𝑀,𝜙𝜙) (c) 〈𝑢𝑢′𝑢𝑢′� 〉 (d) 〈𝑣𝑣′𝑣𝑣′� 〉, 
(e) 〈𝑢𝑢′𝑣𝑣′� 〉 and (f) 〈𝑇𝑇𝑇𝑇𝑇𝑇�〉 with Ma and ϕ . The surface plots are computed using the MBKG method at the input 
locations shown in Figure (Fig No). Because of the overall symmetry of the computational set up, the magnitude of  
𝐶𝐶𝐿𝐿�(𝑀𝑀𝑀𝑀,𝜙𝜙) and 〈𝑢𝑢′𝑣𝑣′� 〉 is negligibly small.is negligibly small. 
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CHAPTER 5.  EVALUATION OF VARIABLE FIDELITY BASED SURROAGATE 

MODELS FOR MULTISCALE MODELING OF SHOCK PARTICLE 

INTERACTIONS 

 

5.1 INTRODUCTION 

Multiscale problems with distinct meso- and macroscales appear in several important engineering 

applications. Examples of typical applications include the dynamics of particle-laden gases [1,2], 

deformation of heterogeneous materials such as bones [3–5], concrete [6,7], heterogeneous 

explosives[8–11], sediment transport in river beds [12], and meso-scale models of blood flow [13]. 

In such problems, macroscale computations typically resolve a limited range of length and time 

scales. The unresolved scales are analyzed separately and coupled to the macroscale using closure 

laws in homogenized macroscale systems of equations [10,14–16]. With increasing computational 

power and improved physical models and algorithms, there has been an increasing interest [3,17–

21] in constructing closure laws using metamodeling [22–25] techniques. In this approach, 

ensembles of resolved mesoscale simulations are used to create surrogate models for the closure 

terms in the macroscale system of equations. While the method allows realistic modeling of 

closures from high-fidelity mesoscale simulations, a bottleneck of this method is the cost of 

performing large number of mesoscale simulations for constructing the metamodels [26,27]. This 

limitation becomes severe as the dimension of the parameter space increases [39], making the 

computational cost of performing the required number of high-fidelity simulations prohibitively 

high. In such scenarios, it is useful to investigate techniques which allow the construction of 

metamodels from limited sets of high-fidelity simulations. This work compares different methods 

of constructing robust and accurate surrogates using ensembles of relatively inexpensive low 

resolution mesoscale computations in the context of shocked-particle laden flows. The techniques 

examined in this paper can be applied generally to multi-scale modeling problems where there is 

a distinct separation of scales and the macro-scale and meso-scale can be computed using 

continuum thermo-mechanical descriptions. 

5.1.1 Surrogate Based Multiscale Modeling for Shock-Particle Interaction 

The specific problem of shocks interacting with particles is an example of the use of expensive 

mesoscale simulations for constructing metamodels for bridging scales in a multiscale modeling 

framework. Macro-scale models of shock-particle interactions, such as the Cloud-in-Cell models 
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[14,28,20,29,30] track the mean trajectory of “computational” particles when impacted by a shock. 

The computational particles, which are collections of physical particles, are modeled as singular 

point sources in the flow field and their motion is forced by the drag exerted on them by the 

surrounding fluid. Resolved mesoscale computations of shock-particle interactions have been used 

in the past by the authors [19,31–35] to generate surrogate models [22–25] for the drag on particles 

as functions of shock strength and particle volume fractions [20,19]. Although the mesoscale 

simulations comprised inviscid two-dimensional computational models, each mesoscale 

simulation was worth several hours of CPU time even in high-performance computing systems. In 

general, the computational cost of performing numerical experiments increase exponentially with 

the number of simulations (Figure 45). Therefore, in the interest of practical computational 

affordability, it is necessary to keep the number of high-fidelity simulations as low as possible.   

 

The first step in ensuring that surrogates are obtained from sparse sets of high-fidelity simulations 

is to choose a robust metamodeling technique. The performance of metamodeling techniques under 

sparse data sets is an active field of research [22,31,36,37].  The authors, in a previous work [31], 

studied the convergence behavior of several metamodeling techniques for analytical functions and 

semi-empirical drag laws and observed that the Kriging family of methods required the least 

number of inputs to construct reliable and accurate surrogates. In particular, for inputs obtained 

from real-time simulations of shock-particle interactions, it was found that the Modified Bayesian 

Kriging Method [37] created smooth and monotonically convergent surrogates [38] for drag from 

the least number of inputs, even when the input data was noisy. However, even with the MBKG 

method, 56 mesoscale computations were required to construct a reasonably accurate surrogate 

model of the drag [38]. This was found to be the true when the parameter space in [38] was only 

two-dimensional. It is well known that the number of experiments increase exponentially with the 

dimension of the parameter space [39]. Therefore, creating closures based on higher dimensional 

parameter spaces (e.g. drag as a function of Mach Number, Particle Volume Fraction, Reynolds 

Number) following the approach in [38] becomes practically impossible [39]. The problem is even 

more severe if mesoscale computations are based on more expensive computational models (such 

as viscous, three-dimensional computations). In such scenarios, a robust surrogate modeling 

technique operating on high-fidelity numerical simulations alone is insufficient to create 

metamodels from mesoscale computations. 
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5.1.2 Variable Fidelity Based Surrogate Methods for Multiscale Modeling 

Variable-fidelity based surrogate modeling [26,27,40–45] provides an affordable route for 

constructing metamodels in such scenarios. In this approach, the burden of creating a first 

approximation of the surrogate model is shifted to low-resolution/coarse grid computations. 

Coarse-grid computations are relatively inexpensive; several such simulations are therefore 

affordable to construct an initial surrogate. However, because low resolution computations suffer 

from high discretization errors, the initial surrogate has low fidelity. The low-fidelity surrogate is 

subsequently corrected using only a few high fidelity computations. Because high-fidelity 

simulations are limited only for correcting a low-fidelity surrogate model, variable-fidelity based 

surrogate methods requires fewer resolved simulations compared to high-fidelity surrogate 

modeling techniques. This makes variable-fidelity based surrogates modeling methods an 

attractive choice for metamodeling in cases where the cost of constructing high fidelity surrogates 

becomes prohibitively large. 

 

In the past, variable-fidelity based methods have been limited to surrogate-based design 

optimization problems [26,27,40–45]. Several variable-fidelity techniques, such as Space 

Mapping [26,27], SPRM [41], co-kriging based methods [46–48] have been used in the past to 

create surrogates for objective functions in optimization studies. However, the use of these 

methods for creating surrogates in the specific context of bridging scales in multiscale modeling 

problems remains to be studied. The requirements of the two classes of problems differ from each 

other. In case of design optimization problems, an optimum design is based on the gradients and 

the locations of the extrema of the surrogate model in the parameter space – rather than the actual 

values of the (surrogate-based) objective function [26,45–47,49]. In contrast, in surrogate-based 

multiscale methods, the surrogate model serves as numerical closure laws in macro-scale 

computations. Therefore, it is not the gradient (shape) or the location of extrema of the surrogate 

in the parameter space, but the actual values of the surrogate model at all points in the parameter 

space that are significant in multiscale modeling problems. In other words, the criteria for a 

variable-fidelity method to be appropriate for creating surrogates is more stringent in multiscale 

modeling problems. Evaluating the suitability of the framework of variable-fidelity based 

surrogate modelling in multiscale problems remains to be explored.  
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In the above context, it is necessary to quantify the rates of convergence of different variable-

fidelity methods for surrogates constructed from numerical experiments. In the past, there has been 

limited research on comparing the rates of convergence of different variable-fidelity techniques 

even for design optimization problems. However because high-fidelity simulations are expensive, 

to ensure that no high-fidelity simulation is wasted, it is important to study the rates of convergence 

of different variable-fidelity techniques. A method with a higher rate of convergence ensures better 

accuracy at the expense of lesser high-fidelity simulations and is more suitable for multiscale 

modeling problems than methods with lower rates of convergence.   

 

A related issue which has received limited attention in the past is the definition of low-fidelity 

computations itself. In other words, can a variable fidelity method correct any low-fidelity 

surrogate model or is there a limit on the grid resolution below which obtaining a corrected 

surrogate is impossible? This issue is important because the coarser the mesh size is, the lesser is 

the compute time required for generating an initial surrogate. As an example, for particle laden 

flows, an ensemble of 56 mesoscale simulations take approximately half the time if each cylinder 

is discretized by two mesh points across the diameter as opposed to four mesh points (Figure 45).    

This motivates the comparison of surrogates obtained from different levels of fidelity, even among 

low-fidelity simulations.        

 

5.1.3 Evaluation of Different Correction Methods to Create a Robust Variable-fidelity Based 
Surrogate Model for Drag on Particles interacting with Shocks  

The present paper evaluates the suitability of different variable fidelity techniques for use in 

multiscale modeling problems. In the present paper, three different correction techniques - Space 

Mapping [26,27] , Radial Basis Function Networks (RBFs) [50–54] and the Modified Bayesian 

Kriging method (MBKG) [37] – are evaluated based on their ability to construct reliable and 

accurate surrogates for drag in particles interacting with shock. Each of these methods represent 

state-of the-art correction techniques/fitting methods which can be suitably employed to create 

variable-fidelity surrogates from mesoscale computations. Two definitions of low-fidelity 

computations of shock-particle interactions are considered. In the first case, cylinders are 

discretized by 2 mesh points across the diameter, while in the second case, they are discretized by 

4 mesh points across the diameter. The three aforementioned methods are used to correct both the 
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low-fidelity surrogates. The error of these methods are evaluated by comparing the values of the 

variable-fidelity surrogates with those of high-fidelity surrogates.  The rates of convergence of 

these methods with respect to the number of high-fidelity computations needed are studied and the 

compute time for constructing a surrogate with a given error value is evaluated. The methods are 

then compared with one other to ascertain their relative advantages and disadvantages for creating 

variable-fidelity surrogates for drag in particle laden flows. 

 

The rest of the paper is organized as follows. In Section 5.2.1 , the governing equations and the 

numerical algorithms for performing the mesoscale computations are described. In Section 5.2.2 , 

the MBKG method used for constructing a surrogate model is summarized. The different 

techniques for obtaining a variable-fidelity surrogate model by correcting low-fidelity surrogates 

are described in Section 5.2.3 .  The step-by-step procedure for constructing variable surrogates 

are discussed in Section 5.3 . Variable-fidelity surrogates are compared with high-fidelity 

surrogates and the rates of convergence and computational times of different variable-fidelity 

methods are shown in Section 5.4 . Relevant inferences and possible directions of work for future 

are discussed in Section 5.5 . 

5.2 GOVERNING EQUATIONS AND NUMERICAL METHODS 

5.2.1 Governing Equation and Numerical Method for Mesoscale Computations 

5.2.1. 1 The Governing Equations  
 

In the mesoscale computations, the gas flow is modeled by the compressible Euler equations:  
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 (64) 

 

where ρ, ui, p are the density, velocity components and the pressure of the fluid respectively, while 

E = e + 1/2uiui and e are the specific total internal energy and the specific internal energy of the 

fluid. The equations are closed by the ideal gas equation of state given by 
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 ( )1−= γρep  (65) 

 

where the specific heat ratio γ = 1.4. A well tested Eulerian code SCIMITAR3D [55–61] is used 

to solve Equation (64)  and is described in the next section.  

5.2.1. 2 Numerical Framework 
The governing equations are spatially discretized on a fixed Cartesian mesh using a 3rd order 

Essentially Non-Oscillatory (ENO) [62] scheme and are marched in time explicitly using a 3rd  

order Runge-Kutta (RK) scheme. The procedure for tracking the interfaces of the solid particles 

and the application of the boundary conditions at the interface is summarized as follows. 

1. To define embedded objects in the flow a narrow-band level-set [63] method is used; this 

allows tracking the object interfaces in a sharp manner. The level set field, 𝜙𝜙𝑙𝑙 at any point 

is the signed normal distance from the 𝑙𝑙𝑡𝑡ℎ immersed object with 𝜙𝜙𝑙𝑙 < 0 inside the 

immersed object and 𝜙𝜙𝑙𝑙 > 0 outside. The interface is implicitly determined by the zero 

level set fields, i.e. 𝜙𝜙𝑙𝑙 = 0 contour represents the 𝑙𝑙𝑡𝑡ℎ immersed boundary. 

2. Once the object interfaces are identified by 𝜙𝜙𝑙𝑙 = 0 contour levels, the no-penetration 

boundary conditions are applied using a variant of the ghost fluid method (GFM) [64].  

GFM relies on the definition of a band of ghost points corresponding to each phase of the 

interacting materials. The ghost points for the fluid phase are the points lying inside the 

embedded object (defined by 𝜙𝜙𝑙𝑙 > 0) and real points are those which are outside.  

3. Once these ghost points are identified, the next step is to populate the ghost field for the 

fluid. The ghost field is obtained by constructing least-squares interpolation of the field 

variables of real material points and by imposing the appropriate interfacial conditions [60] 

Once the values of the flow variables (e.g. ρ, ui, p and E) at the ghost points are populated 

with the least-squares field, the two-material problem can be converted to two single-

material problems consisting of real fields and their corresponding ghost fields. The field 

variables can be updated in space and time using the ENO and the RK schemes. 

The computational algorithm described in this section is used for performing mesoscale numerical 

experiments to study the interaction of a shock of strength, Ma with a particle cluster of volume 

fraction, ᶲ. The goal of the simulations is to compute a representative mesoscale drag, 𝐹𝐹𝐷𝐷�(𝑀𝑀𝑀𝑀, ᶲ) 
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for different values of Ma and ᶲ. Once 𝐹𝐹𝐷𝐷�(𝑀𝑀𝑀𝑀, ᶲ) is computed for several numerical experiments, 

the next step is to create a surrogate model for 𝐹𝐹𝐷𝐷�(𝑀𝑀𝑀𝑀, ᶲ) using a metamodeling technique - the 

MBKG method - which is described in the next section. 

5.2.2 Metamodeling Technique for Construction of Surrogate Models  

Metamodeling involves the estimation of an unknown function )(xf  which is known only at 

certain discrete and distinct points xj (j=1,N. The set of the known values of the function and their 

locations, i.e. the set (xj, )( jf x ) are known as the inputs of the surrogate model and are used to 

construct the unknown function )(xf in the parameter space. The point 0x , where the value of 

f(x) is of interest, is called the “probe point” of the surrogate model, while the value of the function 

at the probe point, f( 0x ) is called the output of the surrogate model. 

5.2.2. 1 The Modified Bayesian Kriging Method  
The MBKG method [37,65] assumes the inputs come from a stationary Gaussian random process, 

with a mean value of Pλ + Z and variance σ2β, i.e. 

 ( ) ( )IZPλx 2
0 βσ,~~

+MVNf  (66) 

 

where Pλ represents the mean structure, and Z is modeled as a Gaussian random process with zero 

mean and covariance Rxx 2)]()([ σ=qj ZZE . The matrix, R is a spatial correlation of the input 

points, and is defined as follows.  
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,,, θγθ xxR  (67) 

 

where θ is a shape parameter, ( )kqkjk xx −=d , k = 1,2,…,n, n being the dimension of the vector x.  

Commonly used models of the correlation functions are listed in Table 4 [66]. The unknown 

parameters in the MBKG model are λ, σ2, θ and β.  
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Table 5 : Common Correlation Models used in the Kriging Family of Methods 

To determine the unknown parameters,  the MBKG method considers a probability distribution 

function over the weight space, representing the relative degrees of belief in different values for 

the model parameters [39]. The function is initially set to a prior distribution and the observations 

i.e., the input data are used to convert the prior distribution to a posterior distribution using Bayes’ 

theorem, which is given by Equation (34).  

 ( ) ( ) ( )ParameterDataParameterDataParameter fff ×∝  (68) 

Here, ( )ParameterDataf  and ( )DataParameterf  are the prior and posterior probability 

distributions respectively and ( )Parameterf  is the likelihood. The mean of the posterior is used to 

obtain a point estimate for the unknown parameter value, while the probability intervals of the 

posterior is used to define credible sets, which are believed to contain the true parameter value 

with a specified probability. 

Priors may be chosen such that they are conjugate priors wherever possible, i.e., the prior 

distribution may be from a parametric family that takes on the same functional form as the 

likelihood function. In cases where a conjugate prior does not exist for a given problem, any 

distribution that reflects the prior knowledge about the unknown parameters may be used as priors. 
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In such cases, Bayes’ rule is applied using the Markov Chain Monte Carlo (MCMC) to draw 

samples from high-dimensional and non-standard probability distributions.  

For the three unknown model parameters, λ, σ2 and β, semi-conjugate prior distributions are used 

to fit the MBKG surrogate model. For the parameter λ, the conjugate prior is a multivariate normal 

distribution and is expressed as  

 ( )λλ Σμλ ,~ MVN  (69) 

 

where μλ and Σλ are the prior mean vector and the covariance matrix for the distribution. Similarly, 

the conjugate prior distribution for σ2 and θ are Inverse-Gamma distributions expressed as  

 ( )σσ βασ ,Gamma Inverse~2  (70) 

 ( )ββ βαβ , Gamma Inverse ~  (71) 

where ασ, βσ, αβ, ββ are the prior parameters of the respective distributions. The parameters θ are 

embedded in the correlation matrix, R, and there is no known conjugate distribution type that may 

be used as prior distributions. The prior distribution for θ is chosen to be a uniform distribution 

and is expressed as  

 ( )
jj

baj θθθ ,U~  (72) 

where θj is the jth correlation function parameter and aθj and bθj are the prior parameters for θj. 

Using Equations (35) through (38), the joint posterior distribution for the MBKG formulation 

given in Equation (34) may be expressed as  
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The full conditionals for each of the model parameters, shown in [37], may be used to estimate the 

values of the model parameter for each MCMC sample. Because the MBKG method is evaluated 

using posterior distributions, the MBKG surrogate model is not a deterministic surrogate model 
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but rather a surrogate that produces posterior distributions for the MBKG parameters. Therefore, 

a predicted response value does not have one deterministic value but rather has a distribution that 

gives the probability of the predicted response value being in any interval. The MCMC samples 

drawn from the predictive distribution of the response variable may be used to estimate any desired 

characteristics of the distribution, e.g., the mean, standard deviation and credible sets. The larger 

the standard deviation and the wider the credible sets, the more uncertainty there is in the predicted 

value. The credible sets come closer to the mean value with larger number of samples, i.e. the 

uncertainty in the true parameter value reduce remarkably with increasing values of N, the number 

of samples. Unless otherwise mentioned, in the current work, the term MBKG hypersurface/ 

MBKG surrogate model is used to denote the mean response of the probability distribution of the 

predictions. In the present work, the MBKG method is used to create surrogates for drag from 

numerical experiments of a given fidelity. 

5.2.3 Methods for Correction of Low Fidelity Surrogate Models 

A variable-fidelity surrogate modeling technique starts out with a low-fidelity surrogate model 

constructed from Nc coarse mesh computations using the MBKG method. The initial surrogate is 

then corrected by performing a few (say Nf) high-fidelity computations. There are several methods 

of correcting the initial hypersurface by comparing the outputs of the low-fidelity and the high-

fidelity computations at points in the parameter space [26,27,40–45]. In the present paper, the 

following three methods are used to correct the low-fidelity hypersurface using high-fidelity 

corrections/simulations.  

5.2.3. 1 Space Mapping 
The space mapping (output space mapping) is a computationally inexpensive method of 

correcting a low-fidelity surrogate model used commonly is surrogate-based design optimization 

problems [26,27,40,41]. The surrogate correction is based on an affine transformation on the low-

fidelity surrogate model to match the high-fidelity simulation outputs. If 𝑓𝑓𝑐𝑐(𝐱𝐱) and 𝑓𝑓𝑓𝑓(𝐱𝐱)  are the 

outputs of the low-fidelity and high-fidelity surrogate models respectively at a location 𝐱𝐱  in the 

parameter space, then the space mapping method corrects the low-fidelity responses using the 

following model. 

 𝑓𝑓𝑓𝑓(𝐱𝐱) = 𝑎𝑎𝑓𝑓𝑐𝑐(𝐱𝐱) + 𝑏𝑏 (74) 
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where a and b are scalar parameters. The parameters a and b are estimated by fitting the values of 

the low-fidelity surrogate model 𝑓𝑓𝑖𝑖𝑐𝑐(𝐱𝐱)  to the high-fidelity surrogate model 𝑓𝑓𝑖𝑖
𝑓𝑓(𝐱𝐱) at i = 1,2,…, 

Nf  locations in the parameter space in a least squares sense. Tthe parameters are determined by 

minimizing the functional Ψ with respect to a and b, where Ψ is defined as follows. 

 𝛹𝛹 = (𝑓𝑓𝑓𝑓(𝐱𝐱) − 𝑎𝑎𝑓𝑓𝑐𝑐(𝐱𝐱) − 𝑏𝑏)2 (75) 

 Once a and b are estimated, a low-fidelity response can be corrected using Equation (74) to obtain 

an estimate of the high-fidelity response at that location. Because in this method, the parameters a 

and b depend only on the responses 𝑓𝑓𝑖𝑖𝑐𝑐(𝐱𝐱) and 𝑓𝑓𝑖𝑖
𝑓𝑓(𝐱𝐱), the estimation of the parameters does not 

depend on the dimensionality of the parameter space, making the correction method robust for 

surrogates constructed on higher dimensional parameter spaces.  

5.2.3. 2 Radial Basis Function Networks 
A Radial Basis Function Network is a fitting method, which uses a (finite) set of identical 

basis Radial Basis Functions (RBF) centered on several distinct points in the input space to 

estimate an unknown function, f(x). The estimated value of the function at a point 0x is given by 

[50,52,53,67,68] 
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where H=Hjk = ( )
kk cci θφ ;xx − j =1, 2, ..., N, k =1, 2, ..., M, with N being the number of 

inputs and M the number of Gaussians used. The determination of optimal parameters, M, xck and 

θck of an RBFANN is a subject of active research [7,50,52,67,69]. In the current approach the 

parameters are determined as follows.  

1. Determination of the number of basis functions, M: To avoid exact interpolation or over-fitting, 

the number of RBFs is chosen to be less than the number of inputs [65]. The number of Gaussians 

are chosen to be approximately 0.8 times the number of inputs. 

2. Determination of the center of the basis function, xck, k =1, 2, ..., M. The RBFs are initially 

uniformly distributed in the domain; the centers are then updated by a K-means clustering 

algorithm to avoid the possibility of an empty cluster in case of non-uniform inputs. 

3. Determination of the shape parameter, θck, of the RBFs: The shape parameter is chosen to be 

equal to the mean distance of an RBF to its three nearest neighboring RBF such that they span the 

entire domain of the input space. 

 

The RBF method is used to estimate an error, 𝑒𝑒(𝐱𝐱) = 𝑓𝑓𝑓𝑓(𝐱𝐱) − 𝑓𝑓𝑐𝑐(𝐱𝐱), where 𝑓𝑓𝑓𝑓(𝐱𝐱) and 𝑓𝑓𝑐𝑐(𝐱𝐱) are 

the responses from the high-fidelity and low-fidelity computations respectively. In the RBF 

method, it is assumed that the shape of the low-fidelity hypersurface is different from the high-

fidelity hypersurface and the error  𝑒𝑒(𝐱𝐱) is a function of the parameter space, x – as opposed to the 

space mapping method (Section 5.2.3. 1 ), where the error is not explicitly a function of x. 

 

5.2.3. 3 The Modified Bayesian Kriging Method  
Similar to Radial Basis Function Networks, the MBKG method (Section 5.2.2. 1 ) is a fitting 

method, which is used in the present work to fit the error, 𝑒𝑒𝑖𝑖(𝐱𝐱) = 𝑓𝑓𝑖𝑖𝑐𝑐(𝐱𝐱) − 𝑓𝑓𝑖𝑖
𝑓𝑓(𝐱𝐱), i = 1,2,…,Nf  in 

order to estimate 𝑒𝑒(𝐱𝐱) in the parameter space.  

5.3 METHODS FOR CONSTRUCTING VARIABLE FIDELITY SURROGATE MODELS 
FOR DRAG IN PARTICLES INTERACTING WITH SHOCK 

In constructing a variable fidelity surrogate model, several coarse grid computations are performed 

to create an initial low-fidelity surrogate model. The initial surrogate model is then corrected using 

very few highly resolved mesoscale computations. In the context of shocked particle laden flows, 

the construction of a variable fidelity-based surrogate model relies on the following components. 
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a) A mesoscale computational model for performing coarse grid numerical experiments 

b) A metamodeling technique for constructing a low-fidelity surrogate model of the drag from 

numerical experiments 

c) A mesoscale computational model for performing a few high resolution mesoscale 

experiments 

d) A method for correcting the low-fidelity surrogate model using the results of resolved 

(high-fidelity) mesoscale computations 

In the present work, mesoscale computations - both low and high fidelity - are performed using 

the code SCIMIATR3D, while low/high fidelity surrogates are constructed using the MBKG 

method. The low fidelity surrogates are corrected using the methods described in Section 5.2.3 . 

The details of obtaining variable fidelity surrogates is described as follows.  

5.3.1 Description of the Mesoscale Computational Experiments 

The mesoscale computational model consists of the gas phase and the particle phase. The particles 

are modeled as rigid cylinders immersed in a flow at various Mach numbers. For sufficiently high 

fluid velocities and small particles the viscous time scales are larger than the shock propagation 

time scales and drag on the particles is dominated by pressure forces. Therefore, the Euler 

equations are solved in the fluid phase. The mesoscale computational domain is illustrated in 

Figure 22. The setup consists of an array of n particles of radius r= 0.01 units, immersed in a 

uniform flow with (u,ρ,p) = (0.0,1.0,1.0). The particles are arranged in a square of 1.0×1.0 units 

and the local particle volume fraction ϕ is given by 

 

 241 rπφ =  (78) 

 

To vary the particle volume fraction, the number of particles, the particle radius, r is varied to 

achieve a target volume fraction. The simulation is initiated with an imposed shock of Mach 

number, Ma, located some distance upstream of the particles. The initial thermo-mechanical 

properties of the shocked gas (air) are computed from the Rankine-Hugoniot jump conditions. Slip 

boundary conditions are specified at the top and bottom surfaces of the computational domain 
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while inflow and outflow boundary conditions are maintained at the left and right of the domain 

respectively.  

In the mesoscale computations, the dimensions of the square in which the particle cluster is 

arranged is selected as the reference length scale, lref  and is set to lref = 1.0. Corresponding to lref, 

a reference time scale, tref is defined as tref = lref / us , such that an incident shock of speed us traverses 

the particle cluster in tref =1 unit of time. Throughout the paper, the drag forces on particles and 

other transient quantities are presented as a function of a scaled time t* which is defined as the 

ratio of the non-dimensional time t to the reference time tref, i.e. t* = t/ tref. Since the shock traverses 

the particle cluster in time of order tref =1, the use of the scaled time t* allows for comparison of 

the dynamics across the range of parameters (ϕ, Ma). 

5.3.2 The Parameter Space for Construction of Variable Fidelity Surrogates 

In the present work, the drag is assumed to depend on Ma and ϕ alone; while the effects of 

Reynolds’ Number, Particle Size Distribution etc are ignored. It is noteworthy that the motivation 

of the present work is a higher dimensional parameter space. However, for the purpose of 

developing and testing the efficacy of a variable fidelity-based surrogate modeling framework, a 

two-dimensional parameter space is considered in the present work. This is because, in a two-

dimensional parameter space, it is possible to generate a high-fidelity surrogate model as well as 

a variable-fidelity surrogate model relatively easily. This allows a direct comparison of the savings 

in computational cost and the error entailed in a variable-fidelity based surrogate model with 

surrogates constructed from resolved high-fidelity computations. For this reason, it is assumed that 

the parameter space in the present work is two-dimensional and the drag in mesoscale 

computations is a function of Ma and ϕ alone – the selection of values of Ma and ϕ for performing 

numerical experiments is discussed in the next section. 

5.3.3 Sequential Sampling Method for Selection of Locations of Mesoscale Computations in the 
Parameter Space  

Because mesoscale computations are expensive, numerical experiments can only be performed at 

selected values (Ma, ϕ) in the parameter space. To construct an initial Kriging surrogate, a set of 

initial inputs are selected by the user. The subsequent input points for further computations are 

typically chosen by the user based on the regions of interest in the parameter space. Examples of 

sampling strategies include choosing samples at regular intervals, Latin Hypercube techniques 
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[70], Latin Centroidal Voronoi Tessellation (LCVT) methods [71], etc. A majority of the sampling 

techniques are unsupervised in nature, i.e. the locations of the subsequent input points in the 

parameter space are independent of the regions of complexity of the hypersurface to be 

approximated. Because the MBKG method gives a measure of the uncertainty associated with the 

fit, it is possible to use the credible sets to identify regions in the parameter space where the error 

in approximation is higher. This can be used to select locations for subsequent inputs in 

constructing surrogate models.  The locations for performing mesoscale simulations in the 

parameter space are systematically selected in the following way: 

1.  First, the limits for the parameter space are specified. Numerical experiments are 

designed to be conducted for 1.1<Ma<3.5 and 1.28%<ϕ<10%. To start with N = N1 

numerical experiments are conducted at uniformly spaced locations in the parameter space 

to obtain 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) values. An initial surrogate model for 𝐹𝐹�𝐷𝐷 is constructed using the 

MBKG methods.  

2. The value of credible sets obtained from fitting the model is computed at 100x100 

locations, uniformly distributed in the parameter space. A new set of N2 candidate locations 

with the highest values of the credible sets in the parameter space are selected for 

performing the next set of numerical experiments. An improved surrogate model is then 

constructed based on the new values of 𝐹𝐹�𝐷𝐷 at all the N = N1+N2 locations.  

3. This process is continued to a desired number of times k, each time adding Nk new points 

until a surrogate model of acceptable accuracy is constructed. Note that the number of 

points Nk is not fixed a priori and the user is free to choose the number of new mesoscale 

simulations based on the computational resources available.  

Surrogate models are constructed for Nk = 13, 29, 45 and 61 mesoscale computations for k = 1,2,3 

and 4 respectively. The location of the mesoscale computations at each step k are shown in Figure 

31. 

5.3.4 Homogenization of the Mesoscale Drag for Generating Inputs to the Surrogate Model 

Each mesoscale computation at the 56 locations in the parameter space resolves the flow around 

the 41 cylinders shown in Figure 22. The drag is different for each of the cylinders in the 

computational domain; but drag correlations that are useful for macroscale computations require 

a unique value of drag for a given value of Ma and ϕ. Following the procedure of our previous 
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work [38], a spatially-averaged drag, 𝐹𝐹𝐷𝐷���(𝑡𝑡∗;𝑀𝑀𝑀𝑀,𝜙𝜙) is defined as the average drag over the five 

central cylinders – viz. cylinders 13, 31, 32, 35 and 36 in Figure 22. The spatially-averaged drag, 

𝐹𝐹𝐷𝐷���(𝑡𝑡∗;𝑀𝑀𝑀𝑀, ᶲ), is still a function of time; 𝐹𝐹𝐷𝐷���(𝑡𝑡∗;𝑀𝑀𝑀𝑀, ᶲ) is averaged over a mesoscale time, 𝑡𝑡∗�  as 

follows:  

 

 ( )
( )

∫

∫
=

=

=

== **

0*

**

0*

*

**
,~

tt

t

tt

t
D

D

dt

dttF
MaF φ  (79) 

 

where 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) denotes the drag averaged over both space and time. One key issue in obtaining 

the time-averaged drag is the selection of the time sample, i.e. the value of 𝑡𝑡∗� . Following the 

convention of our previous work [38],  𝑡𝑡∗�  is selected to be the time when the incident shock system 

completely leaves the particle cluster. A spatio-temporally averaged drag on a representative 

particle 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) is obtained for different values of Ma and ϕ and is used for constructing 

surrogates for the drag using the MBKG method. 

5.3.5 Low Fidelity Mesh Resolutions for Construction of Surrogate Models 

To construct an initial low-fidelity surrogate model, coarse grid computations are performed at Nc 

= 56 aforementioned locations in the parameter space – i.e. Nc = 56 sets of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) are used as 

inputs for the MBKG method. In the present work, two sets of coarse grid computations are 

adopted. The coarsest grid size, named as Mesh A, corresponds to 𝑟𝑟/∆𝑥𝑥 = 2  and is the first low-

fidelity computational model used in the present work. A slightly more refined grid resolution – 

that corresponding to 𝑟𝑟/∆𝑥𝑥 = 4 - is used for constructing another low-fidelity surrogates and is 

hereafter referred to as Mesh B. Each Mesh A and Mesh B computations independently result in 

two sets of low fidelity surrogate models. The next step is to correct the low-fidelity surrogates so 

constructed using high fidelity simulations.  
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5.3.6 Procedure for Selecting Locations for High-Fidelity Computations to Construct Variable 
Fidelity Surrogates  

High-fidelity computations are expensive; the Nh high fidelity computations must be judiciously 

selected to avoid wastage of computational effort.  Typically, a subset of the input locations of the 

low-fidelity experiments are chosen for performing high-fidelity computations [26,41]. Because 

Nc> Nf, there are different ways of selecting the locations for performing the Nf high-fidelity 

computations – the Kaufmann algorithm is a method that allows the selection of a subset 

comprising Nf points from a set of Nc points by ensuring that the selected subset is widely 

distributed in the parameter space. The pseudocode of the algorithm, as implemented in the current 

work, is as follows. 

1. To ensure that the high fidelity input points span the entire parameter space, the first input 

locations are selected at the corners of the parameter space. Thus, for a parameter space of 

dimension n, select the first 2n+1 high-fidelity sample locations at the 2n corners of the 

parameter space and the remaining one located closest to the centroid of the parameter 

space. 

2. For every non-selected input location, xi (i = 1,2,…, nc) do 

a. For every non-selected input location, xj (i = 1,2,…, nc) do 

Calculate Cij = max(Dj – dji,0) where dji = || xi - xj || and Dj = mins dsj , s being one 

of the selected inputs 

b. Calculate the sum of the distances,  ∑ 𝐶𝐶𝑗𝑗𝑗𝑗𝑗𝑗  

3. Select the unselected input location xi which maximizes ∑ 𝐶𝐶𝑗𝑗𝑗𝑗𝑗𝑗  

4. If the number of selected inputs reaches the target value nh, then stop, else go to step 2. 

The sequence of the Nf high fidelity computational locations, as determined using the Kaufmann 

Algorithm, is shown in Figure 50. Thus, if Nf = 15, the points marked as 1,2,3,…,15 would be the 

locations of performing the 15 Mesh C computations. Once the locations of performing the high-

fidelity computations are selected, the next step is to use these results to correct the low fidelity 

hypersurface to obtain a variable-fidelity hypersurface.  

5.3.7 Construction of Variable Fidelity Surrogate Models form Low Fidelity Surrogates 

The low-fidelity surrogates are corrected using Nf  high-fidelity computations using the techniques 

described in Section 5.2.3 .  
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The Space Mapping technique is used to perform an affine transformation of the low-fidelity 

surrogate to obtain a least-squares estimate of the high fidelity surrogate using Equation (74).  

 

The RBF method is used to estimate an error, 𝑒𝑒𝑖𝑖(𝐱𝐱) = 𝑓𝑓𝑖𝑖𝑐𝑐(𝐱𝐱) − 𝑓𝑓𝑖𝑖
𝑓𝑓(𝐱𝐱) , where 𝑓𝑓𝑖𝑖𝑐𝑐(𝐱𝐱),𝑓𝑓𝑖𝑖

𝑓𝑓(𝐱𝐱) are 

the responses of the high and low-fidelity surrogates. To estimate 𝑒𝑒(𝐱𝐱), RBFs are fitted  to the 

error 𝑒𝑒𝑖𝑖(𝐱𝐱) = 𝑓𝑓𝑖𝑖𝑐𝑐(𝐱𝐱) − 𝑓𝑓𝑖𝑖
𝑓𝑓(𝐱𝐱) at i = 1,2,…,Nf  points in the parameter space.  

 

Similar to RBFs, the MBKG method (Section 5.2.2. 1 ) is a fitting method, which is used in the 

present work to fit the error, 𝑒𝑒𝑖𝑖(𝐱𝐱) = 𝑓𝑓𝑖𝑖𝑐𝑐(𝐱𝐱)− 𝑓𝑓𝑖𝑖
𝑓𝑓(𝐱𝐱), i = 1,2,…,Nf  in order to estimate 𝑒𝑒(𝐱𝐱) in the 

parameter space. Each of the three methods are used to create variable fidelity surrogates from the 

Mesh A and Mesh B low fidelity surrogates.  

5.3.8 Evaluation of the Errors and Compute Times in Variable Fidelity Surrogate Modeling 

To compare the surrogates created using Mesh A and Mesh B computations with a high-fidelity 

surrogate, a third hypersurface is created using high fidelity computations alone. High fidelity 

computations are performed using a mesh size corresponding to 𝑟𝑟/∆𝑥𝑥 > 8 and is hereafter referred 

to as Mesh C computations. In general, obtaining a high fidelity surrogate model from Mesh C 

computations would be almost impossible; in the present work, because the parameter space is 2D 

and the mesoscale computations are also two-dimensional and inviscid, a direct comparison of 

high and low-fidelity surrogates is affordable and is used to ascertain the effectiveness of a 

variable-fidelity surrogate model. 

For each of Mesh A and Mesh B low fidelity surrogates, the three methods described in Section 

5.2.3  result in three different sets of variable fidelity hypersurfaces for a given value of Nf. Which 

method results in the “best” hypersurface for low values of Nf ? This requires measures for 

quantifying the error in the variable fidelity surrogates so created as a function of Nf.  

To compare the error involved in creating variable-fidelity surrogates, the low-fidelity surrogate 

model after correction by each of the three methods described in Section 5.2.3  is probed at M = 

100x100 points in the parameter space. These values are then compared with the value obtained 
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by probing the high-fidelity surrogate at the same points in the parameter space. A normalized L2 

error, 𝜀𝜀𝐿𝐿2, is defined as follows. 

 𝜀𝜀𝐿𝐿2 =
∑ �𝐹𝐹�𝐷𝐷𝑉𝑉𝑉𝑉(𝑀𝑀𝑀𝑀𝑖𝑖,𝜙𝜙𝑖𝑖) − 𝐹𝐹�𝐷𝐷𝐻𝐻𝐻𝐻(𝑀𝑀𝑀𝑀𝑖𝑖,𝜙𝜙𝑖𝑖)�

2𝑀𝑀
𝑖𝑖=1

∑ �𝐹𝐹�𝐷𝐷𝐻𝐻𝐻𝐻(𝑀𝑀𝑀𝑀𝑖𝑖,𝜙𝜙𝑖𝑖)�
2𝑀𝑀

𝑖𝑖=1

 (80) 

where 𝐹𝐹�𝐷𝐷𝑉𝑉𝑉𝑉(𝑀𝑀𝑀𝑀𝑖𝑖,𝜙𝜙𝑖𝑖),𝐹𝐹�𝐷𝐷𝐻𝐻𝐻𝐻(𝑀𝑀𝑀𝑀𝑖𝑖,𝜙𝜙𝑖𝑖) denotes the values of F�D(Ma,ϕ) at the point (𝑀𝑀𝑀𝑀𝑖𝑖,𝜙𝜙𝑖𝑖) in the 

parameter space as obtained from the variable fidelity hypersurface and the high fidelity 

hypersurface respectively.  

If the correction methods are monotonically convergent, the error 𝜀𝜀𝐿𝐿2 is expected to decrease for 

increasing Nf. However, adopting larger value of Nf  is impractical because of the increasing 

computational cost. Typically, one is interested in a balance between the computational cost and 

the error entailed in using a value of Nf. For this reason, a cost function, Ψ, is defined as follows. 

 

 𝛹𝛹(𝑁𝑁𝑓𝑓) = 1
2
�
𝜀𝜀𝐿𝐿2
𝜀𝜀𝐿𝐿2�

+ 𝑇𝑇
𝑇𝑇�
� (81) 

 Here, 𝜀𝜀𝐿𝐿2is the normalized L2 error defined in Equation (80), T is the compute time, and 𝜀𝜀𝐿𝐿2� and 𝑇𝑇�  

are normalization quantities chosen so that each of the terms in the right hand side of Equation (4) 

has an order of magnitude of 1. In the present work, because Mesh A is the coarsest approximation, 

the Mesh A low-fidelity surrogate is expected to have the highest value of L2 error. Therefore, 𝜀𝜀𝐿𝐿2�  

is chosen to be the value of  𝜀𝜀𝐿𝐿2 for Nf = 0 corresponding to Mesh A computations so that the 

supremum of the first term in the right hand side of Equation (4) is of the order of magnitude 1. 

Similarly, because Mesh C computations are most expensive (in comparison to Mesh A and Mesh 

B), the high-fidelity Mesh C surrogate is expected to have the highest value of T. Therefore 𝑇𝑇�  is 

set to the compute time of creating Mesh C hypersurface using 56 high fidelity simulations.  The 

parameter, Ψ, thus helps in quantifying the relative contributions of error in approximation and the 

cost of constructing surrogates from Nf high fidelity simulations. 

The above procedure can be applied to generate variable fidelity surrogates for Mesh A and Mesh 

B; in the next section, the surrogates are presented and compared for each of the three correction 

methods. 

5.4 RESULTS AND DISCUSSIONS 
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The first step in construction of variable-fidelity surrogate models involve performing mesoscale 

numerical experiments to compute the drag on particle-clusters interacting with a shock. The 

mesoscale numerical algorithm is first validated by comparing the results with the case of a shock 

interacting with a single cylinder in Section 5.4.1 , while the results of the variable-fidelity 

surrogate modeling techniques are described in Section 5.4.2 . 

5.4.1 Validation of the Computational Code:  Interaction of a Shock with a Single Cylinder  

To validate the calculations of SCIMITAR3D [55–61] in the present context the interaction 

of a shock with a single cylinder is studied. The diameter of the cylinder is selected to be 0.1 non-

dimensional units and the center of the cylinder is placed at (1.1,1.0) inside a domain of size 3.0 x 

1.0. A planar shock of Ma = 2.6 is initially placed at 𝑥𝑥1 = 1.0. Slip boundary conditions are 

enforced at the top and bottom faces, while inflow and outflow conditions are maintained at the 

west and east faces of the domain respectively. The study is conducted for different mesh sizes of 

∆x= ∆y= 0.004, 0.0025, 0.001, 0.0009 and 0.00075. 

The drag on a cylinder is compared with the calculations of [72]. Figure 23 shows that the peak 

drag coefficient agrees well with the benchmark [72]. The initial part of the drag corresponds to 

the pressure forces on the particle resulting from the passage of the shock and is in good agreement. 

The disagreement in the decreasing part of the drag curve is because the present calculations are 

inviscid while [72] used the Navier-Stokes equations. To further validate the computational model, 

the case of a shock of Ma=2.81 interacting with a cylinder is studied. The locus of the upper and 

lower triple-points of the shock-system created after the onset of Mach reflections are compared 

with  experimental observations of [73] and  calculations of [72]. Figure 24 shows that the current 

calculations are in excellent agreement with the experimental observations as well as the 

calculations of [72]. While more extensive validation of the code SCIMITAR3D is shown in [55–

61], the two problems chosen in this section validate the computations in the context of shock 

interactions with particles. Mesoscale numerical experiments of shock particle interactions are 

performed following the procedure outlined in Section 5.3  and is described next. 
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5.4.2 Variable Fidelity-Based Surrogate Models for Constructing Numerical Drag Law as a 

Function of Ma and ϕ 

Variable fidelity models use a low resolution mesh in combination with a high resolution mesh 

to create surrogates. Before comparing the surrogates obtained from variable-fidelity methods 

with that from high-fidelity methods, it is useful to briefly see the effect of different mesh sizes 

on the local flow features in mesoscale computations.  

5.4.2. 1 Comparison of the Flow Fields and the Drag Values for Different Mesh Sizes for Ma = 

3.5 and ϕ = 1%.   

Figure 51 shows representative computations for a shock of Ma = 3.5 interacting with a particle-

cluster of ϕ = 1%. Because of the coarseness of the mesh, in Mesh A computations, the shape of 

the cylinders are inadequately represented (Figure 51a); some cylinders do not confirm to a circular 

shape in the flow domain. This causes sharp corners in the immersed geometry and slightly alters 

the flow field in Mesh A computations (Figure 51a) compared to the high fidelity computations 

Figure 51c).   

In addition to altering the flow profile resulting from spurious sharp corners in low resolution 

computations,  the shock features - the incident shocks, reflected shocks, slip lines and barotropic 

vortices are more resolved in Mesh C compared to Mesh A and Mesh B computations. Among 

Mesh A and Mesh B, the vortices and the shocks are more “diffused” for Mesh A compared to 

Mesh B.  

The coarseness of the mesh not only influences the flow characteristics, but also the temporal drag 

on particles in mesoscale computations. A comparison of  𝐹𝐹𝐷𝐷���(𝑡𝑡∗;𝑀𝑀𝑀𝑀, ᶲ) for Meshes A, B and C 

(Figure 52) reveals three important features that are of interest in the present work. First, because 

of higher numerical diffusion, the high-fidelity (Mesh C) drag is underestimated by Mesh B and 

even more by Mesh A. In other words, the low fidelity computations are negatively biased and 

Mesh C drag values are a supremum to Mesh A and Mesh B drags. Second, the effect of numerical 

diffusion is not the same for all values of 𝑡𝑡∗  . Because of this, the aforementioned bias is not 

constant with 𝑡𝑡∗ - there are values of 𝑡𝑡∗ (e.g at 𝑡𝑡∗ ~ 0.75) when the bias is higher compared to other 

values (e.g at 𝑡𝑡∗ ~ 1.2) in Figure 52. Therefore, the mean shape of the high-fidelity drag is different 

from the mean shape of the low-fidelity drag. Third, in addition to the bias, the high frequency 
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components of the shape of the low-fidelity drag values (𝐹𝐹𝐷𝐷���(𝑡𝑡∗;𝑀𝑀𝑀𝑀, ᶲ) ) is also different from the 

high-fidelity drag values in Figure 52. The drag from Mesh A has least high frequency oscillations, 

followed by that of Mesh B and finally followed by Mesh C. This is because a finer mesh captures 

the fine-scale shock interactions in the particle cluster more accurately compared to coarser grids. 

Therefore in addition to the bias, which is always one-sided and under-approximates the high 

fidelity drag, the high frequency oscillations produce both a positive and a negative error field 

which causes the smoothness of low fidelity drags to differ from Mesh C drag (Figure 52).  

In summary, there are two major components to the overall error in low fidelity drag – a bias which 

is a function of time and alters the mean shape of the high fidelity drag and an error which alters 

the high-frequency components of the shape of high-fidelity drag. The overall discrepancy of the 

temporal drag, 𝐹𝐹𝐷𝐷���(𝑡𝑡∗;𝑀𝑀𝑀𝑀, ᶲ), results in different values of the spatio-temporally homogenized 

drag  𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) for the different mesh sizes - 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) is the lowest for Mesh A, followed by 

Mesh B and Mesh C (Table 3). To quantify the differences as a function of the parameter space, 

in the next section, the low-fidelity as well as the variable-fidelity surrogates obtained using Mesh 

A and Mesh B are compared with the high fidelity surrogate constructed using Mesh C.  

5.4.2. 2 Correction of the Low Fidelity Hypersurfaces to obtain a Variable-Fidelity Surrogate 

Model for 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) 

Low Fidelity surrogates for drag are constructed individually for both Mesh A and Mesh B 

computations using the MBKG method (5.2.3. 3 ).  The low-fidelity surrogates are then corrected 

using Nf   high-fidelity computations using the techniques described in Section 5.2.3 . To visualize 

the surrogates of 𝐹𝐹�𝐷𝐷(𝑀𝑀𝑀𝑀,𝜙𝜙) , a set of M = 100x100 probe points, distributed regularly inside the 

domain, are selected. To compare the low-fidelity/variable-fidelity hypersurfaces with a high 

fidelity hypersurface, the MBKG method is also trained using Mesh C computations – this 

surrogate is interrogated at the aforementioned M = 100x100 probe points to create a hypersurface 

of the high fidelity drag. The variable fidelity surrogates constructed for  Nf = 15 are used for 

comparison with the high-fidelity surrogates. 

Correction of Mesh A hypersurface using Nf  high fidelity computations 
 

Mesh A hypersurface represents a low-fidelity surrogate model, constructed using 56 mesoscale 

simulations in each of which every cylinder in the domain is discretized using approximately 2 
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mesh points across the radius. Because of the coarseness of the mesh, the mesoscale computations 

are computationally inexpensive – each numerical experiment is worth less than an hour’s of 

compute time in a multiprocessor system.  However, the low-fidelity hypersurface created using 

Mesh A computations differ from the high-fidelity (Mesh C) hypersurface in several aspects.  

The differences – an overall non-uniform bias and high-frequency oscillations – between drags of 

different fidelities described in Section 5.4.2. 1  can be seen to translated to the respective surrogate 

models in the following way in Figure 53a. First, the low-fidelity hypersurface has more high 

frequency noise compared to the Mesh C hypersurface (Figure 53a). This is true especially for 

higher values of ϕ, for example for ϕ > 10% (Figure 53a), where the contour lines of the Mesh A 

hypersurface can be observed to be more oscillatory compared to the Mesh C hypersurface. 

Second, the shape of the low-fidelity and the high-fidelity hypersurfaces differ from one another. 

This can be seen by observing that the contour lines of the two hypersurfaces are not parallel to 

each other (Figure 53a), especially for Ma > 2.5.Third, the Mesh A hypersurface underestimates 

the drag value in the parameter space. For instance, unlike the high-fidelity hypersurface, where 

the maximum value of F�D(Ma,ϕ) is approximately 1.6, the Mesh A hypersurface estimates the 

maximum value of F�D(Ma,ϕ) to be approximately 0.9 (Figure 53a). This is in agreement with the 

trends shown in Figure 52, where 𝐹𝐹𝐷𝐷���(𝑡𝑡∗;𝑀𝑀𝑀𝑀, ᶲ) was shown to be under-approximated using 

𝑟𝑟/𝛥𝛥𝛥𝛥 = 2 (Mesh A) compared to 𝑟𝑟/𝛥𝛥𝛥𝛥 = 8 (Mesh C) computations for (Ma, ϕ) = (3.5,1.0%) 

(Section 5.4.2. 1 ). 

The Mesh A hypersurface is corrected using Nf high-fidelity computations using the methods 

described in Section 5.2.3 . Representative contour plots of the variable-fidelity hypersurface 

obtained after correcting the low-fidelity (Mesh A) hypersurface using Nf = 15 are shown in Figure 

53(b)-(d); the results are compared with the high-fidelity hypersurface.  

The space-mapping correction technique is based on an affine transformation of the low-fidelity 

hypersurface. Because of this, the bias in the low-fidelity hypersurface is corrected efficiently and 

the multifidelity hypersurface no longer underestimates the value of F�D(Ma,ϕ) in the parameter 

space. In contrast to the Mesh A hypersurface, where the peak value of F�D(Ma,ϕ) was found to 

be 0.9 (Figure 53a), both the (corrected) variable fidelity hypersurface as well the high fidelity 

hypersurface estimates the peak value of F�D(Ma,ϕ) to be approximately 1.6 (Figure 8b). However, 

the bias in space mapping method is not a function of the parameter space. Therefore, the overall 
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shape of the variable fidelity hypersurface is similar to that of the low-fidelity hypersurface (Figure 

8a and 8b) and differs from the high-fidelity hypersurface. The contour lines of the corrected 

hypersurface are not parallel to those of the high-fidelity hypersurface (Figure 8b), especially for 

Ma > 2.5.   In addition to this, because the constants of  the space mapping correction is constant 

in the parameter space, the variable fidelity surrogate retains the noise from the low-fidelity 

hypersurface in the variable fidelity hypersurface (Figure 53b). This can be seen as oscillations in 

the contours of variable fidelity hypersurface, especially for ϕ > 10%. In conclusion, while the 

space-mapping technique is effective in correcting the discrepancy in the values of the high and 

low fidelity surrogate models, both the overall shape  as well as high-frequency oscillations of the 

low-fidelity hypersurface is not corrected effectively to resemble that of the high-fidelity 

hypersurface by the space-mapping technique. 

Both the RBF correction technique as well as the MBKG technique are based on adding an error 

as a function of the parameter space to the low-fidelity hypersurface. The variable fidelity 

hypersurfaces obtained by fitting the error with an RBF network (Figure 8c) or with the MBKG 

method (Figure 8d) do not retain the high-frequency oscillations present in the low-fidelity 

hypersurface. This is in contrast to the space-mapping method which retains the noise in the low-

fidelity hypersurface (Figure 8b). This is because unlike the space-maping method, where the 

multifidelity hypersurface is a global affine map of the low-fidelity hypersurface, the error function 

in the RBF or MBKG techqniues are non-linear functions of the parameter space. Hence, the RBF 

network or the MBKG method can locally correct the bias as well as the high frequency oscillations 

in the low-fidelity hypersurface to obtain a smooth multifidelity surrogate model. For the same 

reason, the shape of the low-fidelity hypersurface (Figure 8a) can also be effectively corrected to 

resemble that of the high-fidelity hypersurface (Figure 8c-d). This can be seen in  Figure 8c-d 

where the contour lines of the variable fidelity hypersurfaces almost coincide with those of the 

high-fidelity hypersurface. The only regions in the parameter space where the contour lines of the 

two hypersurfaces differ are near the boundaries (i.e. ϕ > 12% and Ma >3) for the RBF correction 

method (Figure 8c). This is because the RBFs, which are not compactly supported, are truncated 

at the boundaries and do not satisfy the consistency condition. Non-compactly supported RBFs are 

erroneous near the boundaries of the parameter space and the contours of the variable fidelity 

hypersurface do not follow those of the high fidelity hypersurface. The MBKG method, on the 

other hand, does not suffer from this limitation are the contours of the variable fidelity hypersurface 
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closely follows those of the high-fidelity hypersurface almost everywhere in the parameter space 

(Figure 8d). Finally, similar to the space-mapping techqniue, the variable fidelity hypersurfaces 

using the RBF method as well as the MBKG do not underestimate the value of F�D(Ma,ϕ) in the 

parameter space (Figure 8c-d). 

In summary, a low-fidelity surrogate created using Mesh A using 56 computations is 

computationally inexpensive and affordable, but it suffers from high-frequency oscillations, and 

differs in shape and underestimates the values of a high-fidelity hypersurface created using 56 

Mesh C computations. However, a high-fidelity hypersurface is computationally expensive and 

can become prohibitive for high-dimensional parameter space. On the other hand, a multifidelity 

hypersurface created using Mesh A computations and Nf  (which is set to 15 in this section) high-

fidelity simulations is both computationally more affordable than a purely high-fidelity 

hypersurface (Figure so-and-so for compute time) as well as less erroneous compared to a low-

fidelity hypersurface. A variable fideilty hypersurface obtained using any of the three techqniues 

discussd previously does not under-estimate the value of a high-fidelity hypersurface, is noise-free 

if obtained using RBF or the MBKG method and resembles the shape of the high-fidelity 

hypersurface very closely almost everywhere in the parameter space if created using the MBKG 

method. Therefore a variable fidelity hypersurface serves as a good trade-off between affordability 

(in terms of compute time) and accuracy (in terms of error entalied) for surrogate-based multiscale 

modeling.  

Do the same conclusions hold if the low-fidelity surrogate is better approximated than the Mesh 

A hypersurface shown in Figure 8a? In the next section, the error entailed and the computation 

cost of variable-fidelity surrogate models created from slightly better (Mesh B) low-fidelity 

surrogate is analyzed using the three correction methods descried previously. 

Correction of Mesh B hypersurface using Nf  high fidelity computations 
 

Similar to the Mesh A hypersurface, a Mesh B hypersurface is also a visual representation of low-

fidelity surrogate model. Each of these computations is such that every cylinder in the domain is 

discretized by approximately 4 mesh points across the radius; these simulations are slightly more 

resolved than Mesh A computations (Figure 51), but are still less resolved than high-fidelity (Mesh 

C) computations. The simulations are computationally more expensive than Mesh A computations 
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– a typical numerical experiment is worth slightly more an hour’s compute time in a multiprocessor 

system; however because the mesoscale experiments are two-dimensional, large number of Mesh 

B numerical experiments are still  inexpensive compared to high-fidelity computations.  

Unlike the Mesh A hypersurface, the low-fidelity hypersurface created using Mesh B computations 

does not contain high-frequency oscillations (Figure 54a). Furthermore, although the shape of the 

low-fidelity hypersurface differs from that of the high-fidelity hypersurface – the contours lines of 

the two hypersurfaces are misaligned at higher values of ϕ and Ma (Figure 54a) - the misalignment 

is not as severe as the Mesh A hypersurface (Figure 8a and Figure 54a). Similarly, the low-fidelity 

hypersurface underestimates the values of F�D(Ma,ϕ) in the parameter space. But compared to the 

Mesh A hypersurface, the values of F�D(Ma,ϕ) obtained using Mesh B are closer to those of Mesh 

C computations (Figure 8a and Figure 54a). For instance, the maximum value of  F�D(Ma,ϕ) is 

approximately 0.9 for the Mesh A hypersurface, while it is 1.5 and 1.6 for Mesh B and Mesh C 

hypersurfaces respectively. In short, for the purpose of variable-fidelity surrogate modeling, the 

Mesh B surrogate model serves as a better first approximation compared to a Mesh A hypersurface. 

The low-fidelity surrogate model is corrected by each of the three methods described in Section 

5.2.3  using Nf  = 15 high fidelity computations.  

Similar to the variable-fidelity model obtained from the Mesh A hypersurface, the variable-fidelity 

surrogate model created using the space-mapping technique retains the shape of the low-fidelity 

(Mesh B) surrogate model (Figure 54b). However, unlike the Mesh A hypersurface, the shapes of 

the low-fidelity (Mesh B) and the high-fidelity hypersurfaces differ only slightly to begin with; 

therefore the variable-fidelity surrogate created using space-mapping technique agree reasonably 

well with the high-fidelity hypersurface (Figure 54b). The variable-fidelity hypersurfaces created 

from Mesh B surrogates by using the RBF method or the MBKG methods almost coincide with 

the high-fidelity hypersurface (Figure 54c-d). In particular when using the RBF method, the 

variable fidelity hypersurface created from Mesh B agrees better with the high-fidelity 

hypersurface compared to the variable-fidelity hypersurface created from Mesh A (Figure 8c and 

Figure 54c). However, when the MBKG method is used for corrections, the variable-fidelity 

hypersurfaces approximate the high-fidelity surrogate model equally well  (Figure 8d and Figure 

54d) – irrespective of whether the starting hypersurface is from Mesh A or Mesh B. 
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In conclusion, Mesh B computations are slightly more expensive than Mesh A simulations, but are 

still affordable compared to high-fidelity simulations. Because Mesh B computations are more 

resolved than Mesh A computations, the low-fidelity hypersurface provides a better first 

approximation to the high-fidelity hypersurface. Because of this, all the three correction techniques 

result in reasonably well variable fidelity surrogate models, i.e. the variable fidelity surrogate 

models corrected from Mesh B computations using any of the three methods approximately the 

high-fidelity hypersurface closely. However, of all the three correction methods, the MBKG 

method is particularly attractive.  

5.4.2. 3 Comparison of the Methods of Correcting Low-Fidelity Surrogates created from Mesh 

A/Mesh B computations 

Figure 55(a) shows the variation of 𝜀𝜀𝐿𝐿2 with the number, Nf, of high-fidelity computations used for 

correcting the low-fidelity hypersurface. For a given low-fidelity hypersurface, irrespective of the 

value of Nf, among all the methods for corrections, the error is highest for the space-mapping 

technique and lowest for the MBKG technique. This is because as explained in Sections 0 and 0, 

the space-mapping technique only corrects the bias of the low-fidelity hypersurfaces and cannot 

correct the shape or smoothness of the low-fidelity hypersurface to match that of the high-fidelity 

hypersurface. The RBF network, when used for obtaining a variable-fidelity model, corrects both 

the shape, smoothness as well as the bias of the low-fidelity surrogate. The variable-fidelity model 

obtained using RBFs are therefore less erroneous than the space-mapping technique. But RBFs are 

erroneous near the boundaries of the parameter space. This was seen to be particularly true for 

variable-fidelity models created from Mesh A surrogates in Section 0. The MBKG method on the 

other hand does not suffer from boundary issues and corrects both the shape as well as the values 

of the low-fidelity surrogate, while simultaneously eliminating noise. Therefore, the variable-

fidelity model obtained using the MBKG method has the lowest values of 𝜀𝜀𝐿𝐿2 compared to the 

other two methods. 

Figure 55(a) also shows that for a given correction method, the value of 𝜀𝜀𝐿𝐿2 is lower when a 

variable-fidelity surrogate model is created starting from Mesh B computations than for Mesh A 

computations. This is because, as shown in Sections 0 and 0, the low-fidelity compared to that 

obtained from Mesh A computations. However, for the MBKG method, the value of  𝜀𝜀𝐿𝐿2 is 

comparable irrespective of the choice of the low-fidelity surrogate model.  Mesh A computations 
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are cheaper than Mesh B computations and is particularly attractive for applications to surrogates 

based on higher dimensional parameter spaces and/or 3D mesoscale computations.  

In summary, for a given starting low-fidelity surrogate, the error in the MBKG variable-fidelity 

surrogate is lowest. Furthermore, for the MBKG method, irrespective of the starting low-fidelity 

surrogate - Mesh A or Mesh B – the residual errors are comparable. Mesh A computations are 

cheaper than Mesh B computations and is particularly attractive for applications to surrogates 

based on higher dimensional parameter spaces and/or 3D mesoscale computations. This makes the 

MBKG method particularly attractive over the other two methods. 

While Figure 55(a) shows that the error decreases for higher values of Nf , the use of larger number 

of Nf  leads to larger ensembles of resolved mesoscale simulations which makes the computational 

cost prohibitively high. A balance between the compute time and error entailed in using smaller 

values of Nf is more useful for practical purposes; the variation of the cost function Ψ, given by 

Equation (4) with Nf  is instructive for this purpose.  

For the Space Mapping method, Ψ is seen to be the lowest for Nf  = 5 (Figure 55(b)). The value of 

Ψ is seen to be lower for Mesh A than for Mesh B. This is because although the error is higher for  

Mesh A, the overall computational cost of creating Mesh A surrogates outweighs the decrease in 

error when moving from Mesh A to Mesh B. For Nf  > 5, the computational cost of high fidelity 

simulations increases faster than the rate at which the error decreases and the value of Ψ increases 

for Nf  > 5. Therefore for the Space Mapping method, the minimum value of Ψ is obtained for Nf  

= 5 for Mesh A computations. 

The minimum value of Ψ obtained using the RBF methods is the same as the minimum value of 

Ψ obtained using the Space Mapping technique (Figure 55(b)). Furthermore, like the Space 

Mapping technique, because of lesser cost of creating an initial surrogate, Mesh A yields a lower 

value of Ψ compared to Mesh B. However, RBFs require Nf  = 15 to reach this minima, as opposed 

to Nf  = 5 for the Space Mapping method. This is because the error 𝜀𝜀𝐿𝐿2 decreases appreciably for 

RBFs when Nf  is changed from 5 to 15 compared to the Space Mapping method (Figure 55(a)) , 

while the increase in compute time is the same for both the methods. Beyond Nf  = 15, the increase 

in compute time outweighs the decrease in error for the RBF method and Ψ increases. In 

conclusion, for RBFS, the minimum value of Ψ is obtained for Nf  = 15 for Mesh A computations; 

this minima is lower than that of Space Mapping methods.  
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Similar to the RBF method, for the MBKG method, the lowest value of Ψ is obtained to be at Nf  

= 15, while beyond Nf  = 15 the value of Ψ increases. Furthermore, because the errors in Mesh A 

and Mesh B are comparable to each other but Mesh A is computationally less expensive, Ψ is 

lowest for Mesh A. Because MBKG methods yields the lowest values of 𝜀𝜀𝐿𝐿2 compared to RBFs 

and Space Mapping methods, the value of Ψ is minimum for the MBKG method compared to the 

other two techniques. In conclusion, the minimum value of Ψ is obtained for Mesh A 

computations, using Nf  = 15 for MBKG methods; the value of Ψ is minimum for MBKG method 

compared to RBFs and the Space Mapping Techniques. Therefore, a Mesh A low fidelity 

hypersurface, when corrected using 15 high fidelity samples with the MBKG method, yields the 

most optimum balance between compute time and error in variable fidelity surrogate modeling. 

5.5 CONCLUSIONS 

This paper analyzes several variable fidelity methods for surrogate modeling in the context of 

multiscale modeling of shock-particle interactions. Mesoscale simulations of particles interacting 

with shocks are performed using the code SCIMITAR3D; the drag on the particle cluster is 

computed as function of the shock strength and volume fraction of the particle. The drag so 

obtained is used to create surrogate models using the MBKG method. In the present work, three 

different sets of surrogate models are constructed. Mesh A and Mesh B surrogates are low fidelity 

metamodels and are created from ensembles of coarse-grid mesoscale computations, the grid being 

coarser for Mesh A. For the purpose of determining the bias and errors of the low fidelity 

surrogates, a third set of surrogate - Mesh C surrogate is created from resolved mesoscale 

computations. In addition to this, a few extra high fidelity computations are performed and are 

used to correct the Mesh A and Mesh B surrogates. Three different variable-fidelity techniques, 

SM, RBFs and MBKG are then used to correct the Mesh A and Mesh B surrogates; to ascertain 

the effectiveness of these methods, in correcting the low fidelity surrogates, the corrected variable 

fidelity surrogate is compared to the Mesh C surrogate. The computational cost of performing 

high-fidelity simulations to correct the low-fidelity surrogates and the error entailed in using 

variable fidelity models is compared for the three aforementioned techniques. 

It is found that among the three methods, the SM techniques is found to correct the bias of low 

fidelity surrogates alone and preserves the shape of the low-fidelity surrogates. The RBF method, 

being a non-linear correction technique corrects both the bias as well as the error in the low-fidelity 
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surrogate. However, compared to these two methods, the MBKG method is found to entail the 

least error in obtaining a variable fidelity surrogate. In fact not only does the MBKG method yield 

the best approximation, but it also uses the minimum number of high-fidelity computations to 

achieve this correction, thereby ensuring minimum computational cost. 

 

 

Figure 45 : Indicative compute time for performing mesoscale simulations of shocks interacting with particles. The 
computational set up and the mesh resolutions are described in [33]; simulations are performed on the high-performance 

computing system, Helium, at the University of Iowa (https://its.uiowa.edu/hpc). 

 

https://its.uiowa.edu/hpc
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Figure 46 : Comparison of the coefficient of drag force, CD , on a cylinder as obtained from SCIMITAR3D with the 

computations of [72]; the shock Mach Number, Ma is 2.6. 
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Figure 47 : Comparison of the trajectory of the lower and upper triple points as calculated from SCIMITAR3D with 

the computations of [72] and the experiments of [73];  the shock Mach number, Ma = 2.81; the mesh size used is 
Δx=Δy= 0.0025. 

 

 

Figure 48 : Description of the set up for numerical experiments; the domain of interest comprises a right moving 
shock of Mach Number, Ma. To the right of the shock is an array of 41 particles of equal diameter d inscribed in an 
imaginary unit square (of area A = 1). The volume fraction, ϕ, of the array of particles is given by 𝜙𝜙 = 41𝜋𝜋𝑑𝑑2/4. 

The particles are numbered 1 through 41 as indicated in the figure. 

 

 

Shock of Mach Number, Ma 

Rigid static cylinders of  
diameter d 

Density ρc, 
Pressure pc, 
Velocity uc, 

= [uc 0] 

Density ρi = 1, 
Pressure pi=1, 

Velocity ui, 
= [0 0] 
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Figure 49 : Location of the points of mesoscale computations in the parameter space; these points serve as input 
data to create a surrogate model for 𝑭𝑭�𝑫𝑫 . The drag at points marked as “Initial Sample Points” are first used to 
create a first approximation of a surrogate model for 𝑭𝑭�𝑫𝑫. The points marked as “Sample points for Iteration 2” 

are as calculated from the adaptive sampling algorithm of DKG; mesoscale computations are performed to 
obtain the drag at these locations for constructing the second approximation of a surrogate for 𝑭𝑭�𝑫𝑫. The process is 
repeated for other iterations. To cross-validate the quality of approximation a set of mesoscale computations are 
performed at the points labelled as “Test Points for Computing Error”; the drag from the computations at these 
points are not used to train the metamodeling techniques but are used to compare against the prediction of the 

surrogate model after each iteration to compute the error, 𝜺𝜺𝑳𝑳𝟐𝟐. 
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Figure 50 : Sequential selection of locations of 𝑁𝑁𝑓𝑓 locations for high –fidelity simulations for correcting low 
fidelity surrogates determined using the Kaufman Algorithm. All points are the locations of low-fidelity (Mesh 
A/Mesh B) simulations. The 𝑁𝑁𝑓𝑓 locations for high-fidelity simulations are selected from the locations of low-

fidelity simulations. As an example, when 15 high-fidelity simulations are used for correcting low fidelity 
surrogates, 𝑁𝑁𝑓𝑓 is set to 15 and the locations marked as 1-15 in this figure are selected for performing Mesh C 

computations. 
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(b) 
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(d) 

 
(e) 

 

 
(f) 

Figure 51 : Numerical Schlieren images of the interaction of a shock of Ma = 3.5 with a particle cluster of ϕ = 
1% at t* = 1.32. Figures (a),(c) and (e) show the numerical Schlieren images for the whole particle cluster 

computed using Mesh A, Mesh B and Mesh C respectively; Figures (b),(d) and (f) show the zoomed-in view of 
the Schlieren images near the five central particles computed using Mesh A, Mesh B and Mesh C respectively. 

Mesh A and Mesh B are low fidelity computations, while Mesh C is a high fidelity computation. 
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Spatio-temporal averaged drag 𝐹𝐹𝐷𝐷�(𝑀𝑀𝑀𝑀,ϕ) 
Mesh A 0.426 
Mesh B 0.512 
Mesh C 0.522 

Table 6 : Value of  FD�(Ma,ϕ) computed using the low-fidelity (Mesh A and Mesh B) and high-
fidelity (Mesh C) computations for a shock of Ma = 3.5 interacting with a particle-cluster of 
volume fraction ϕ = 1% Ma = 3.5 and ϕ = 1% 

 
 
 
 
 
 

 

Figure 52 : Comparison of the evolution of volume-averaged drag, 𝐹𝐹𝐷𝐷���(𝑡𝑡∗) with time, t* for a shock of Ma = 3.5 
interacting with a particle-cluster of volume fraction ϕ = 1% computed using low fidelity computations (Mesh A 

and Mesh B) and high fidelity computations (Mesh C). 
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Figure 53 : Comparison of the contour of the high fidelity (Mesh C) hypersurface of 𝐹𝐹𝐷𝐷� – shown in solid lines - 
with those of the low fidelity (Mesh A) hypersurface –shown in dashed lines - (a) before correction (b) after 

correction using space mapping (c) after correction using RBFs (d) after correction using the MBKG method and 
€. The number of high fidelity computations used for correcting the low fidelity surrogate is 15. 
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Figure 54:  Comparison of the contour of the high fidelity (Mesh C) hypersurface of 𝐹𝐹𝐷𝐷� – shown in solid lines - 
with those of the low fidelity (Mesh B) hypersurface –shown in dashed lines - (a) before correction (b) after 

correction using space mapping (c) after correction using RBFs (d) after correction using the MBKG method and 
€. The number of high fidelity computations used for correcting the low fidelity surrogate is 15. 
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(a) 

 
(b) 

Figure 55 : (a)Variation of the L2 error and the compute time for correcting low fidelity surrogate models 
with the computational time used for correcting the surrogate model. (b) Variation of the Cost Function, 

given by Equation (4)  with the number of high fidelity computations, 𝑁𝑁𝐻𝐻𝐻𝐻. High fidelity computations are 
performed using Mesh C computations, while low fidelity surrogates are created using Mesh A or Mesh B 

computations as indicated in the figure. 
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CHAPTER 6.  CONCLUSIONS 

The present work presents a framework for multiscale modeling of multimaterial flows using 

surrogate modeling techniques in the particular context of shocks interacting with clusters of 

particles. The work builds a framework for bridging scales in shock-particle interaction by using 

ensembles of resolved mesoscale computations of shocked particle laden flows. The information 

from mesoscale models is “lifted” by constructing metamodels of the closure terms - the thesis 

analyzes several issues pertaining to surrogate-based multiscale modeling frameworks. 

First, to create surrogate models, the effectiveness of several metamodeling techniques, viz. the 

Polynomial Stochastic Collocation method, Adaptive Stochastic Collocation method, a Radial 

Basis Function Neural Network, a Kriging Method and a Dynamic Kriging Method is evaluated. 

The rate of convergence of the error when used to reconstruct hypersurfaces of known functions 

is studied. For sufficiently large number of training points, Stochastic Collocation methods 

generally converge faster than the other metamodeling techniques, while the DKG method 

converges faster when the number of input points is less than 100 in a two-dimensional parameter 

space. Because the input points correspond to computationally expensive micro/meso-scale 

computations, the DKG is favored for bridging scales in a multi-scale solver. 

After this, closure laws for drag are constructed in the form of surrogate models derived from real-

time resolved mesoscale computations of shock-particle interactions. The mesoscale computations 

are performed to calculate the drag force on a cluster of particles for different values of Mach 

Number and particle volume fraction. Two Kriging-based methods, viz. the Dynamic Kriging 

Method (DKG) and the Modified Bayesian Kriging Method (MBKG) are evaluated for their ability 

to construct surrogate models with sparse data; i.e. using the least number of mesoscale 

simulations. It is shown that unlike the DKG method, the MBKG method converges monotonically 

even with noisy input data and is therefore more suitable for surrogate model construction from 

numerical experiments.  

In macroscale models for shock-particle interactions, Subgrid Particle Reynolds’ Stress Equivalent 

(SPARSE) terms arise because of velocity fluctuations due to fluid-particle interaction in the 

subgrid/meso scales. Mesoscale computations are performed to calculate the SPARSE terms and 

the kinetic energy of the fluctuations for different values of Mach Number and particle volume 

fraction. Closure laws for SPARSE terms are constructed using the MBKG method. It is found 
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that the directions normal and parallel to those of shock propagation are the principal directions of 

the SPARSE tensor. It is also found that the kinetic energy of the fluctuations is independent of 

the particle volume fraction and is 12-15% of the incoming shock kinetic energy for higher Mach 

Numbers.  

Finally, the thesis addresses the cost of performing large ensembles of resolved mesoscale 

computations for constructing surrogates. Variable fidelity techniques are used to construct an 

initial surrogate from ensembles of coarse-grid, relative inexpensive computations, while the use 

of resolved high-fidelity simulations is limited to the correction of initial surrogate. Different 

variable-fidelity techniques, viz the Space Mapping Method, RBFs and the MBKG methods are 

evaluated based on their ability to correct the initial surrogate. It is found that the MBKG method 

uses the least number of resolved mesoscale computations to correct the low-fidelity metamodel. 

Instead of using 56 high-fidelity computations for obtaining a surrogate, the MBKG method 

constructs surrogates from only 15 resolved computations, resulting in drastic reduction of 

computational cost.     
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